Home

Awesome

segmentInterpreter

A shiny utility to interpret segments of a partitioned time-series. The partitioning is done using the breakpoints function/algorithm from the strucchange R package. The aim of visually interpretting a set of time-series segments is to create a training dataset for automatic classification of the segments into their land dynamics afterwards (using random forest or other classifiers).

Dependencies

R packages spectralResilience, shiny, stringr, RSQLite.

Input data

Input data must be a in a sqlite database. The structure of the table should be as follows. These are extracted individual remote sensing time-series for individual pixels. B1 to B7 correspond to the surface reflectance values of these observations, and sceneID is the Landsat scene identifier of the scene from which the observation was extracted; it's mostly important to retrieve the date of the observation.

indexB1B2B3B4B5B7featureIDlatlongsceneID
12715953993006158560311184-7.714687-50.01402LT52230652010104CUB00
42585594212818157160811184-7.714687-50.01402LT52230652010136CUB00
72675834532647161564711184-7.714687-50.01402LT52230652010184CUB00
1081399992326062074105511184-7.714687-50.01402LT52230652010248CUB00
1254984682627962280118711184-7.714687-50.01402LT52230652010264CUB00
1469496692428762337133311184-7.714687-50.01402LT52230652010280CUB00
182555764353032175869711184-7.714687-50.01402LT52230652010344CUB00
202955023712533136049811184-7.714687-50.01402LT52230652010360CUB00
242235133382675155463411184-7.714687-50.01402LT52230652011155CUB01
272254543842530151060911184-7.714687-50.01402LT52230652011187CUB00
302945965062487176182911184-7.714687-50.01402LT52230652011219CUB01
3341068169726442083114111184-7.714687-50.01402LT52230652011251CUB01
9513896034942061112458111184-7.714687-50.01402LT52240652010031CUB00
9712836194512742138065811184-7.714687-50.01402LT52240652010095CUB00
.................................

Output

The app writes the interpreted segment classes linked to some properties of these segments (mean, phenological amplitude, slope, etc) to a sqlite database.