Home

Awesome

sqlgen generates SQL statements and database helper functions from your Go structs. It can be used in place of a simple ORM or hand-written SQL. See the demo directory for examples.

Install

Install or upgrade with this command:

go get -u github.com/drone/sqlgen

Usage

Usage of sqlgen:
  -type string
    	type to generate; required
  -file string
    	input file name; required
  -o string
    	output file name
  -pkg string
    	output package name
  -db string
    	sql dialect; sqlite, postgres, mysql
  -schema
    	generate sql schema and queries; default true
  -funcs
    	generate sql helper functions; default true

Tutorial

First, let's start with a simple User struct in user.go:

type User struct {
	ID     int64
	Login  string
	Email  string
}

We can run the following command:

sqlgen -file user.go -type User -pkg demo

The tool outputs the following generated code:

func ScanUser(row *sql.Row) (*User, error) {
	var v0 int64
	var v1 string
	var v2 string

	err := row.Scan(
		&v0,
		&v1,
		&v2,
	)
	if err != nil {
		return nil, err
	}

	v := &User{}
	v.ID = v0
	v.Login = v1
	v.Email = v2

	return v, nil
}

const CreateUserStmt = `
CREATE TABLE IF NOT EXISTS users (
 user_id     INTEGER
,user_login  TEXT
,user_email  TEXT
);
`

const SelectUserStmt = `
SELECT 
 user_id
,user_login
,user_email
FROM users 
`

const SelectUserRangeStmt = `
SELECT 
 user_id
,user_login
,user_email
FROM users 
LIMIT ? OFFSET ?
`


// more functions and sql statements not displayed

This is a great start, but what if we want to specify primary keys, column sizes and more? This may be acheived by annotating your code using Go tags. For example, we can tag the ID field to indicate it is a primary key and will auto increment:

type User struct {
-   ID      int64
+   ID      int64  `sql:"pk: true, auto: true"`
    Login   string
    Email   string
}

This information allows the tool to generate smarter SQL statements:

CREATE TABLE IF NOT EXISTS users (
-user_id     INTEGER
+user_id     INTEGER PRIMARY KEY AUTOINCREMENT
,user_login  TEXT
,user_email  TEXT
);

Including SQL statements to select, insert, update and delete data using the primary key:

const SelectUserPkeyStmt = `
SELECT 
 user_id
,user_login
,user_email
WHERE user_id=?
`

const UpdateUserPkeyStmt = `
UPDATE users SET 
 user_id=?
,user_login=?
,user_email=?
WHERE user_id=?
`

const DeleteUserPkeyStmt = `
DELETE FROM users 
WHERE user_id=?
`

We can take this one step further and annotate indexes. In our example, we probably want to make sure the user_login field has a unique index:

type User struct {
    ID      int64  `sql:"pk: true, auto: true"`
-   Login   string
+   Login   string `sql:"unique: user_login"`
    Email   string
}

This information instructs the tool to generate the following:

const CreateUserLogin = `
CREATE UNIQUE INDEX IF NOT EXISTS user_login ON users (user_login)

The tool also assumes that we probably intend to fetch data from the database using this index. The tool will therefore automatically generate the following queries:

const SelectUserLoginStmt = `
SELECT 
 user_id
,user_login
,user_email
WHERE user_login=?
`

const UpdateUserLoginStmt = `
UPDATE users SET 
 user_id=?
,user_login=?
,user_email=?
WHERE user_login=?
`

const DeleteUserLoginStmt = `
DELETE FROM users 
WHERE user_login=?
`

Nesting

Nested Go structures can be flattened into a single database table. As an example, we have a User and Address with a one-to-one relationship. In some cases, we may prefer to de-normalize our data and store in a single table, avoiding un-necessary joins.

type User struct {
    ID     int64  `sql:"pk: true"`
    Login  string
    Email  string
+   Addr   *Address
}

type Address struct {
    City   string
    State  string
    Zip    string `sql:"index: user_zip"`
}

The above relationship is flattened into a single table (see below). When the data is retrieved from the database the nested structure is restored.

CREATE TALBE IF NOT EXISTS users (
 user_id         INTEGER PRIMARY KEY AUTO_INCREMENT
,user_login      TEXT
,user_email      TEXT
,user_addr_city  TEXT
,user_addr_state TEXT
,user_addr_zip   TEXT
);

JSON Encoding

Some types in your struct may not have native equivalents in your database such as []string. These values can be marshaled and stored as JSON in the database.

type User struct {
    ID     int64  `sql:"pk: true"`
    Login  string
    Email  string
+   Label  []string `sql:"encode: json"
}

Dialects

You may specify one of the following SQL dialects when generating your code: postgres, mysql and sqlite. The default value is sqlite.

sqlgen -file user.go -type User -pkg demo -db postgres

Go Generate

Example use with go:generate:

package demo

//go:generate sqlgen -file user.go -type User -pkg demo -o user_sql.go

type User struct {
    ID     int64  `sql:"pk: true, auto: true"`
    Login  string `sql:"unique: user_login"`
    Email  string `sql:"size: 1024"`
    Avatar string
}

Benchmarks

This tool demonstrates performance gains, albeit small, over light-weight ORM packages such as sqlx and meddler. Over time I plan to expand the benchmarks to include additional ORM packages.

To run the project benchmarks:

go get ./...
go generate ./...
go build
cd bench
go test -bench=Bench

Example selecing a single row:

BenchmarkMeddlerRow-4      30000        42773 ns/op
BenchmarkSqlxRow-4         30000        41554 ns/op
BenchmarkSqlgenRow-4       50000        39664 ns/op

Selecting multiple rows:

BenchmarkMeddlerRows-4      2000      1025218 ns/op
BenchmarkSqlxRows-4         2000       807213 ns/op
BenchmarkSqlgenRows-4       2000       700673 ns/op

Credits

This tool was inspired by scaneo.