Home

Awesome

DECISION

Unsupervised Multi-source Domain Adaptation Without Access to Source Data (CVPR '21 Oral)

Overview

This repository is a PyTorch implementation of the paper Unsupervised Multi-source Domain Adaptation Without Access to Source Data published at CVPR 2021. This code is based on the SHOT repository.

Dependencies

Create a conda environment with environment.yml.

Dataset

Training

python train_source.py --dset office --s 0 --max_epoch 100 --trte val --gpu_id 0 --output ckps/source/
python adapt_multi.py --dset office --t 1 --max_epoch 15 --gpu_id 0 --output_src ckps/source/ --output ckps/adapt
python distill.py --dset office --t 1 --max_epoch 15 --gpu_id 0 --output_src ckps/adapt --output ckps/dist

Citation

If you use this code in your research please consider citing

@article{ahmed2021unsupervised,
  title={Unsupervised Multi-source Domain Adaptation Without Access to Source Data},
  author={Ahmed, Sk Miraj and Raychaudhuri, Dripta S and Paul, Sujoy and Oymak, Samet and Roy-Chowdhury, Amit K},
  journal={arXiv preprint arXiv:2104.01845},
  year={2021}
}