Awesome
DECISION
Unsupervised Multi-source Domain Adaptation Without Access to Source Data (CVPR '21 Oral)
Overview
This repository is a PyTorch implementation of the paper Unsupervised Multi-source Domain Adaptation Without Access to Source Data published at CVPR 2021. This code is based on the SHOT repository.
Dependencies
Create a conda environment with environment.yml
.
Dataset
- Manually download the datasets Office, Office-Home, Office-Caltech from the official websites.
- Move
gen_list.py
inside data directory. - Generate '.txt' file for each dataset using
gen_list.py
(change dataset argument in the file accordingly).
Training
- Train source models (shown here for Office with source A)
python train_source.py --dset office --s 0 --max_epoch 100 --trte val --gpu_id 0 --output ckps/source/
- Adapt to target (shown here for Office with target D)
python adapt_multi.py --dset office --t 1 --max_epoch 15 --gpu_id 0 --output_src ckps/source/ --output ckps/adapt
- Distill to single target model (shown here for Office with target D)
python distill.py --dset office --t 1 --max_epoch 15 --gpu_id 0 --output_src ckps/adapt --output ckps/dist
Citation
If you use this code in your research please consider citing
@article{ahmed2021unsupervised,
title={Unsupervised Multi-source Domain Adaptation Without Access to Source Data},
author={Ahmed, Sk Miraj and Raychaudhuri, Dripta S and Paul, Sujoy and Oymak, Samet and Roy-Chowdhury, Amit K},
journal={arXiv preprint arXiv:2104.01845},
year={2021}
}