Awesome
AoT_TCAM
[project page] [dataset and pre-process tools]
Torch model for arrow of time prediction in the CVPR 18 paper
D. Wei, J. Lim, A. Zisserman, W. Freeman. <b>"Learning and Using the Arrow of Time."</b> in CVPR 2018.
Demo:
- training from scratch flow-TCAM model for AoT prediction on UCF101
CUDA_ID=0,1,2;GPU_ID=1,2,3;CPU_N=10;
N_BATCH=32;N_FRAME=20;N_C=2
M_LABEL=2;M_LOSS=0;M_BEND=cudnn
M_DROPOUT=0.5,0.5;M_ARCH=vggbn_tcam_pair2
D_TYPE=2;D_PRE=5;D_NAME=flow%s_%04d.jpg;D_CROP=2;D_TCROP=1;
D_OUT=results/ucf_train/
D_TXT=data/@01_cnn_ta_flow_orig_fb.txt
E_SAVE=5;E_ALL=20;E_ST=1;E_SIZE=5000;E_ITER=3
E_PARAM=5.1
CUDA_VISIBLE_DEVICES=${CUDA_ID} th main_video.lua -GPUs ${GPU_ID} -nDonkeys ${CPU_N} \
-batchSize ${N_BATCH} -vnF ${N_FRAME} -vnC ${N_C} \
-lossType ${M_LOSS} -nClasses ${M_LABEL} -Mdropout ${M_DROPOUT} -netType ${M_ARCH} -backend ${M_BEND} \
-cropType ${D_CROP} -TcropType ${D_TCROP} -cache ${D_OUT} -data ${D_TXT} -xType ${D_PRE} -imType ${D_TYPE} -imFormat ${D_NAME} \
-retrain train -retrainOpt train -paramId ${E_PARAM} \
-nEpochs ${E_ALL} -epochNumber ${E_ST} -epochSave ${E_SAVE} -epochSize ${E_SIZE} -iter_size ${E_ITER} 2>&1 | tee ${Dout}/log-${N_BATCH}-${N_FRAME}-${N_C}-${M_DROPOUT}-${M_ARCH}-${D_TYPE}-${D_PRE}-${D_CROP}-${D_TCROP}-${E_ALL}-${E_ST}-${E_ITER}.log
Tips:
-
to debug in lua, add this line:
local dbg = require('util/debugger');dbg()
-
to visualize data in matlab, add this line:
local matio = require 'matio'; matio.save('test.mat',{t1=data1,t2=data2})
Reference Torch Packages:
Citation
Please cite our paper if you find it useful for your work:
@inproceedings{wei2018learning,
title={Learning and Using the Arrow of Time},
author={Wei, Donglai and Lim, Joseph J and Zisserman, Andrew and Freeman, William T},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={8052--8060},
year={2018}
}