Awesome
HAN
TensorFlow implementation of Z. Hu et al. "Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction", WSDM 2018
-
Main components
- TensorFlow 1.4.0
- Numpy
- Scikit-learn
-
Dataset
- Stock prices and tweets
- Yumo Xu and Shay B. Cohen "Stock Movement Prediction from Tweets and Historical Prices", ACL 2018.
- Copy https://github.com/yumoxu/stocknet-dataset/tree/master/price/preprocessed/* files to {PROJECT_PATH}/data/price/preprocessed/
- Copy https://github.com/yumoxu/stocknet-dataset/tree/master/tweet/preprocessed/* files to {PROJECT_PATH}/data/tweet/preprocessed/
- 87 stocks (S & P 500)
- 31 Dec 2013 ~ 31 Dec 2015
- Stock prices and tweets
-
Word Representation
- Download http://nlp.stanford.edu/data/glove.twitter.27B.zip
- Extract to data/
-
Working directory setting
$ export PYTHONPATH=$PYTHONPATH:$(pwd)
Experiment
- Run dataset.py
- Run main.py
Future Reference
- Word Representation
-
fastText (ref. https://github.com/facebookresearch/fastText#building-fasttext-for-python)
- Installation
$ git clone https://github.com/facebookresearch/fastText.git $ cd fastText $ pip3 install .
- wiki english folder set
- ~/common/fasttext/wiki.en.bin
- Download - https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
-
BERT
- BERT-Large, uncased, whole word masking
- BERT tokenization
-