Home

Awesome

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Overview

An unofficial implementation of SRGAN described in the paper using PyTorch.

Published in CVPR 2017

Requirement

Datasets

Pre-trained model

Train & Test

Train

python main.py --LR_path ./LR_imgs_dir --GT_path ./GT_imgs_dir

Test

python main.py --mode test --LR_path ./LR_imgs_dir --GT_path ./GT_imgs_dir --generator_path ./model/SRGAN.pt

Inference your own images

python main.py --mode test_only --LR_path ./LR_imgs_dir --generator_path ./model/SRGAN.pt

Experimental Results

Experimental results on benchmarks.

Quantitative Results

MethodSet5Set14B100
Bicubic28.4325.9925.94
SRResNet(paper)32.0528.4927.58
SRResNet(my model)31.9628.4827.49
SRGAN(paper)29.4026.0225.16
SRGAN(my model)29.9326.9526.10

Qualitative Results

BicubicSRResNetSRGAN
<img src="result/Set14_BIx4/comic_LRBI_x4.png"><img src="result/set14_srres_result/res_0004.png"><img src="result/set14_srgan_result/res_0004.png">
<img src="result/Set5_BIx4/woman_LRBI_x4.png"><img src="result/set5_srres_result/res_0004.png"><img src="result/set5_srgan_result/res_0004.png">
<img src="result/Set14_BIx4/baboon_LRBI_x4.png"><img src="result/set14_srres_result/res_0000.png"><img src="result/set14_srgan_result/res_0000.png">

Comments

If you have any questions or comments on my codes, please email to me. son1113@snu.ac.kr