Home

Awesome

CVSformer

CVSformer: Cross-View Synthesis Transformer for Semantic Scene Completion

Alt text

Instructions

Environment

We use pytorch 1.9.0 with cuda 11.1. To build the environment, run:

matplotlib
opencv-python
plyfile
'trimesh>=2.35.39,<2.35.40'
'networkx>=2.2,<2.3'
tqdm
ninja
easydict
argparse
h5py
scipy

Dataset

For NYU, download from https://github.com/charlesCXK/TorchSSC.

For NYUCAD, download from https://github.com/UniLauX/PALNet.

You can train your segmentation to obtain the 2D input of CVSformer. We pre-train DeepLabv3 for 1,000 epochs to segment the RGB image.

Training

$ cd extensions 
$ python setup.py install
$ python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py 

Performance

You can obtain our SOTA model from https://pan.xunlei.com/s/VN_rkyLfy43RBn1BfXwrTJtGA1?pwd=qumh#.

NYU

<table> <tr> <th>Method</th> <th>SC IoU</th> <th>SSC mIoU</th> </tr> <tr> <td>Sketch</td> <td>71.3</td> <td>41.1</td> </tr> <tr> <td>SemanticFu</td> <td>73.1</td> <td>42.8</td> </tr> <tr> <td>FFNet</td> <td>71.8</td> <td>44.4</td> </tr> <tr> <td>SISNet(voxel)</td> <td>70.8</td> <td>45.6</td> </tr> <tr> <td>PCANet</td> <td>78.9</td> <td>48.9</td> </tr> <tr> <td>SISNet(voxel)</td> <td>78.2</td> <td>52.4</td> </tr> <tr> <td>CVSformer</td> <td>73.7</td> <td>52.6</td> </tr> </table> NYUCAD <table> <tr> <th>Method</th> <th>SC IoU</th> <th>SSC mIoU</th> </tr> <tr> <td>Sketch</td> <td>84.2</td> <td>55.2</td> </tr> <tr> <td>SemanticFu</td> <td>84.8</td> <td>57.2</td> </tr> <tr> <td>FFNet</td> <td>85.5</td> <td>57.4</td> </tr> <tr> <td>SISNet(voxel)</td> <td>82.8</td> <td>57.4</td> </tr> <tr> <td>PCANet</td> <td>84.3</td> <td>59.6</td> </tr> <tr> <td>SISNet(voxel)</td> <td>86.3</td> <td>63.5</td> </tr> <tr> <td>CVSformer</td> <td>86.0</td> <td>63.9</td> </tr> </table>

Alt text