Home

Awesome

DomainEval

Environment Setup

cd DomainEval/setup

env_name="your env name"
conda create -n "$env_name" python=3.9 -y
conda activate "$env_name"
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install -r requirements_py39.txt

Benchmark Construction

Domain Repository Collection

Move the code repository to the path directory of the corresponding domain {src_data}/{domain}.

Test-Method Matching & Selection

domain="your domain"
version="your version"
srcdata_dir="{src_data}"

cd DomainEval
mkdir "log_${version}"
nohup python -u sandbox.py \
--domain "$domain" \
--srcdata_dir "$srcdata_dir" \
--output_dir "bench_${version}" \
> "log_${version}/result_sandbox_${domain}.txt" &
python -u codefilter.py \
--bench_dir "bench_${version}" \
> "log_${version}/result_codefilter.txt"

Instruction Generation

version="your version"
nohup python -u datagenerate.py \
--eval_dir "domaineval_${version}" \
> log_${version}/result_datagenerate.txt &

Dataset

The final data is in domaineval_{your version}. The data is in the format of json, each line is a json object, the format is:

{
    "method_name":,
    "full_method_name":,
    "method_path":,
    "method_code":,
    "test_code_list":[
        {"test_code":, "code_start":, "test_path":},
        {"test_code":, "code_start":, "test_path":}
    ],
    "instruction":,
    "method_code_mask":,
}

Evaluation

First, you need include the path and name of your model in self.model_path_dict within modeleval.py and add your model api in get_message within utils/utils_chat.py and self.model_name_list_api within modeleval.py.

model_name="your model name or std"

# set the k in pass@k, it can only be 1 or 5 currently
k_pass=1 # or k_pass=5

# set the version of the dataset
version="your version"
eval_dir="domaineval_${version}"

# model inference
nohup python -u modeleval.py \
-m "$model_name" \
-b "$eval_dir" \
-k "$k_pass" \
> "result_modeleval_${model_name}_pass\@${k_pass}.txt" &

# result execution and analysis
nohup python -u resultexec.py \
-m "$model_name" \
-v "$eval_dir" \
-k "$k_pass" \
> result_exec.txt &
resultexec_pid=$!
echo $resultexec_pid
wait $resultexec_pid
mkdir -p "analyseresult/pass@${k_pass}"
python resultanalyse.py \
-m "$model_name" \
-v "$eval_dir" \
-k "$k_pass" \
> "analyseresult/pass@${k_pass}/result_analyse_${model_name}.txt"

Tips: To evaluate LLMs using the domaineval_20240711 dataset, first set model_name="std", k_pass=1, and version="20240711", then run the commands in Evaluation to verify the environment. With a correctly installed environment, the accuracy of std should be 100%, with the only possible failure being a timed out error. You can also use our setup/Dockerfile to build the execution docker, but be aware that two data points might time out.

Submission

Now you have the results of your model on the dataset.

The next step is to submit a pull request for the project:

  1. Fork the repository into your own GitHub account.
  2. Clone the repository to your local.
  3. Checkout a new branch from main.
  4. Make the results directories above (i.e. ./modelresult/${eval_dir}/${model_name}, ./executeresult/${eval_dir}/${model_name}, ./analyseresult/pass@${k_pass}/result_analyse_${model_name}.txt).
  5. Submit the Pull Request.
  6. The maintainers will review your Pull Request soon.

Once your pull request is accepted, we will update the Leaderboard with your results.