Home

Awesome

针对某些Pascal显卡例如1080ti在darknet上训练失败的可以采用Pytorch版yolo3框架训练

<a href="https://apps.apple.com/app/id1452689527" target="_blank"> <img src="https://user-images.githubusercontent.com/26833433/85940594-2d3f7d80-b8d2-11ea-809a-87b3bf6d968b.jpg" width="1000"></a> &nbsp

This repo contains Ultralytics inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Credit to Joseph Redmon for YOLO https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.6. To install run:

$ pip install -r requirements.txt

Tutorials

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco2017.sh. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

Resume Training: python3 train.py --resume to resume training from weights/last.pt.

Plot Training: from utils import utils; utils.plot_results()

<img src="https://user-images.githubusercontent.com/26833433/78175826-599d4800-7410-11ea-87d4-f629071838f6.png" width="900">

Image Augmentation

datasets.py applies OpenCV-powered (https://opencv.org/) augmentation to the input image. We use a mosaic dataloader to increase image variability during training.

<img src="https://user-images.githubusercontent.com/26833433/80769557-6e015d00-8b02-11ea-9c4b-69310eb2b962.jpg" width="900">

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: preemptible n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.14/hr), T4 ($0.11/hr), V100 ($0.74/hr) CUDA with Nvidia Apex FP16/32
HDD: 300 GB SSD
Dataset: COCO train 2014 (117,263 images)
Model: yolov3-spp.cfg
Command: python3 train.py --data coco2017.data --img 416 --batch 32

GPUn--batch-sizeimg/sepoch<br>timeepoch<br>cost
K80132 x 211175 min$0.41
T41<br>232 x 2<br>64 x 141<br>6148 min<br>32 min$0.09<br>$0.11
V1001<br>232 x 2<br>64 x 1122<br>17816 min<br>11 min$0.21<br>$0.28
2080Ti1<br>232 x 2<br>64 x 181<br>14024 min<br>14 min-<br>-

Inference

python3 detect.py --source ...

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.pt
<img src="https://user-images.githubusercontent.com/26833433/64067835-51d5b500-cc2f-11e9-982e-843f7f9a6ea2.jpg" width="500">

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.pt
<img src="https://user-images.githubusercontent.com/26833433/64067834-51d5b500-cc2f-11e9-9357-c485b159a20b.jpg" width="500">

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt
<img src="https://user-images.githubusercontent.com/26833433/64067833-51d5b500-cc2f-11e9-8208-6fe197809131.jpg" width="500">

Pretrained Checkpoints

Download from: https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0

Darknet Conversion

$ git clone https://github.com/ultralytics/yolov3 && cd yolov3

# convert darknet cfg/weights to pytorch model
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'weights/yolov3-spp.pt'

# convert cfg/pytorch model to darknet weights
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'weights/yolov3-spp.weights'

mAP

<i></i>SizeCOCO mAP<br>@0.5...0.95COCO mAP<br>@0.5
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics32014.0<br>28.7<br>30.5<br>37.729.1<br>51.8<br>52.3<br>56.8
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics41616.0<br>31.2<br>33.9<br>41.233.0<br>55.4<br>56.9<br>60.6
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics51216.6<br>32.7<br>35.6<br>42.634.9<br>57.7<br>59.5<br>62.4
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics60816.6<br>33.1<br>37.0<br>43.135.4<br>58.2<br>60.7<br>62.8
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment

Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=640, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weight
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)

               Class    Images   Targets         P         R   mAP@0.5        F1: 100%|█████████| 313/313 [03:00<00:00,  1.74it/s]
                 all     5e+03  3.51e+04     0.375     0.743      0.64     0.492

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.456
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.647
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.496
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.596
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.361
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.597
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.666
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.492
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810

Speed: 17.5/2.3/19.9 ms inference/NMS/total per 640x640 image at batch-size 16
<!-- Speed: 11.4/2.2/13.6 ms inference/NMS/total per 608x608 image at batch-size 1 -->

Reproduce Our Results

Run commands below. Training takes about one week on a 2080Ti per model.

$ python train.py --data coco2014.data --weights '' --batch-size 16 --cfg yolov3-spp.cfg
$ python train.py --data coco2014.data --weights '' --batch-size 32 --cfg yolov3-tiny.cfg
<img src="https://user-images.githubusercontent.com/26833433/80831822-57a9de80-8ba0-11ea-9684-c47afb0432dc.png" width="900">

Reproduce Our Environment

To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

Citation

DOI

About Us

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

For business inquiries and professional support requests please visit us at https://www.ultralytics.com.

Contact

Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.