Awesome
Detector-Free Weakly Supervised Group Activity Recognition
Dongkeun Kim, Jinsung Lee, Minsu Cho, Suha Kwak
Project Page | Paper
Overview
This work introduces a detector-free approach for weakly supervised group activity recognition.
Citation
If you find our code or paper useful, please consider citing our paper:
@InProceedings{Kim_2022_CVPR,
author = {Kim, Dongkeun and Lee, Jinsung and Cho, Minsu and Kwak, Suha},
title = {Detector-Free Weakly Supervised Group Activity Recognition},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {20083-20093}
}
Requirements
- Ubuntu 16.04
- Python 3.8.5
- CUDA 11.0
- PyTorch 1.7.1
Conda environment installation
conda env create --file environment.yml
conda activate gar
Install additional package
sh scripts/setup.sh
Download dataset
-
Volleyball dataset <br/> Download Volleyball dataset from: <br/> https://drive.google.com/file/d/1DaUE3ODT_H5mBFi8JzOVBNzVldxfbPbX/view?usp=sharing
Dataset should be located following the file structure described below. <br/> -
NBA dataset <br/> The dataset is available upon request to the authors of "Social Adaptive Module for Weakly-supervised Group Activity Recognition (ECCV 2020)".
Download trained weights
sh scripts/download_checkpoints.sh
Run test scripts
-
Volleyball dataset (Merged 6 class classification)
sh scripts/test_volleyball_merged.sh
-
Volleyball dataset (Original 8 class classification)
sh scripts/test_volleyball.sh
-
NBA dataset
sh scripts/test_nba.sh
Run train scripts
-
Volleyball dataset (Merged 6 class classification)
sh scripts/train_volleyball_merged.sh
-
Volleyball dataset (Original 8 class classification)
sh scripts/train_volleyball.sh
-
NBA dataset
sh scripts/train_nba.sh
File structure
│── Dataset/ <br/> │ │── volleyball/ <br/> │ │ └── videos/ <br/> │ │── NBA_dataset/ <br/> │ │ └── videos/ <br/> │ │ └── train_video_ids <br/> │ │ └── test_video_ids <br/> │── checkpoints/ <br/> │── scripts/ <br/> │── dataloader/ <br/> │── models/ <br/> │── util/ <br/> train.py <br/> test.py <br/> README.md <br/> environment.yml <br/>
Acknowledgement
This work was supported by the NRF grant and the IITP grant funded by Ministry of Science and ICT, Korea (NRF-2021R1A2C3012728, NRF-2018R1A5A1060031, IITP-2020-0-00842, IITP-2021-0-00537, No. 2019-0-01906 Artificial Intelligence Graduate School Program-POSTECH).