Awesome
Towards More Practical Group Activity Detection:<br> A New Benchmark and Model
Dongkeun Kim, Youngkil Song, Minsu Cho, Suha Kwak
Project Page | Paper
Overview
This work introduces the new benchmark dataset, Café, and a new model for group activity detection (GAD).
Requirements
- Ubuntu 20.04
- Python 3.8.5
- CUDA 11.0
- PyTorch 1.7.1
Conda environment installation
conda env create --file environment.yml
conda activate gad
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html
Install additional package
sh scripts/setup.sh
Download datasets
Download Café dataset from: <br/>
https://cvlab.postech.ac.kr/research/CAFE/
Download trained weights
sh scripts/download_checkpoints.sh
or from: <br/>
https://drive.google.com/file/d/1W_2gkzARCzSdK8Db4G4pkzN3GrJTYo8R/view?usp=drive_link
Run test scripts
-
Café dataset (split by view)
sh scripts/test_cafe_view.sh
-
Café dataset (split by place)
sh scripts/test_cafe_place.sh
Run train scripts
-
Café dataset (split by view)
sh scripts/train_cafe_view.sh
-
Café dataset (split by place)
sh scripts/train_cafe_place.sh
File structure
├── Dataset/
│ └── cafe/
│ └── gt_tracks.pkl
├── dataloader/
├── evaluation/
│ └── gt_tracks.txt
├── label_map/
├── models/
├── scripts/
└── util/
train.py
test.py
environment.yml
README.md
Citation
If you find our work useful, please consider citing our paper:
@article{kim2023towards,
title={Towards More Practical Group Activity Detection: A New Benchmark and Model},
author={Kim, Dongkeun and Song, Youngkil and Cho, Minsu and Kwak, Suha},
journal={arXiv preprint arXiv:2312.02878},
year={2023}
}
Acknowledgement
This work was supported by the NRF grant and the IITP grant funded by Ministry of Science and ICT, Korea (RS-2019-II191906, IITP-2020-0-00842, NRF-2021R1A2C3012728, RS-2022-II220264).