Awesome
Crowdbreaks: Tracking Health Trends using Public Social Media Data and Crowdsourcing
This repository contains all additional code/data/analysis for the paper "Crowdbreaks: Tracking Health Trends using Public Social Media Data and Crowdsourcing".
If you use the data or model please cite the work like this
Müller, Martin M., and Marcel Salathé. "Crowdbreaks: Tracking health trends using public social media data and crowdsourcing." Frontiers in public health 7 (2019).
or
@article{muller2019crowdbreaks,
title={Crowdbreaks: Tracking health trends using public social media data and crowdsourcing},
author={M{\"u}ller, Martin M and Salath{\'e}, Marcel},
journal={Frontiers in public health},
volume={7},
year={2019},
publisher={Frontiers Media SA}
}
Install
conda env create -f environment.yml
Download tweets
Generate a set of Twitter API keys and download the tweets using the following command:
python download_tweets.py -i ./data/vaccine_sentiment_data.csv -o ./data/tweets.jsonl --consumerkey XXX --consumersecret XXX --accesstoken XXX --accesssecret XXX
Download vaccine sentiment model
wget https://crowdbreaks-public.s3.eu-central-1.amazonaws.com/models/fasttext_v1.ftz -o ./data/fasttext_v1.ftz