Awesome
LTGC: Long-Tail Recognition via Leveraging Generated Content [Official, CVPR 2024, Oral]
Overview
Qihao Zhao<sup>*</sup>, Yalun Dai<sup>*</sup>, Hao Li, Wei Hu, Fan Zhang, Jun Liu,
(BUCT & NTU & SUTD & NWPU, * Equal contribution)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2024, Oral Presentation
<img src='./vis_01_github.jpeg' width=900>Further information please contact Qihao Zhao and Yalun Dai.
Dataset Preparation
(1) Three bechmark datasets
- Please download these datasets and put them to the /data file.
- ImageNet-LT and Places-LT can be found at here.
- iNaturalist data should be the 2018 version from here.
data
├── ImageNet_LT
│ ├── test
│ ├── train
│ └── val
├── Place365
│ ├── data_256
│ ├── test_256
│ └── val_256
└── iNaturalist
├── test2018
└── train_val2018
(2) Txt files
data_txt
├── ImageNet_LT
│ ├── ImageNet_LT_test.txt
│ ├── ImageNet_LT_train.txt
│ └── ImageNet_LT_val.txt
├── Places_LT_v2
│ ├── Places_LT_test.txt
│ ├── Places_LT_train.txt
│ └── Places_LT_val.txt
└── iNaturalist18
├── iNaturalist18_train.txt
├── iNaturalist18_uniform.txt
└── iNaturalist18_val.txt
Running Scripts
Before running, please replace your own OPENAI key.
Generated Existing Tail-class Descriptions
python lmm_i2t.py -d $DATASET_PATH -m $MAX_NUMBER -f $CLASS_NUMBER_FILE -exi $EXIST_DESCRIPTION_FILE
Generated Extended Tail-class Descriptions
python lmm_extension.py -exi $EXIST_DESCRIPTION_FILE -m $MAX_GENERATED_IMAGES -ext $EXTEND_DESCRIPTION_FILE
Generated Extended Data using Iterative Evaluation
python draw_i2t.py -ext $EXTEND_DESCRIPTION_FILE -d $DATASET_PATH -t $THRESH -r $MAX_ROUNDS