Awesome
Machine Learning - Image Segmentation
Per pixel image segmentation using machine learning algorithms. Programmed using the following libraries: Scikit-Learn, Scikit-Image OpenCV, and Mahotas and ProgressBar. Compatible with Python 2.7+ and 3.X.
Feature vector
Spectral:
- Red
- Green
- Blue
Texture:
- Local binary pattern
Haralick (Co-occurance matrix) features (Also texture):
- Angular second moment
- Contrast
- Correlation
- Sum of Square: variance
- Inverse difference moment
- Sum average
- Sum variance
- Sum entropy
- Entropy
Supported Learners
- Support Vector Machine
- Random Forest
- Gradient Boosting Classifier
Example Usage
python train.py -i <path_to_image_folder> -l <path/to/label/folder> -c <SVM, RF, GBC> -o <path/to/model.p>
python inference.py -i <path_to_image_folder> -m <path/to/model.p> -o <path/to/output/folder>
python evaluation.py -i <path/to/test/images> -g <path/to/ground/truth/images> [-m]