Home

Awesome

<p align="center"> <img src="https://raw.githubusercontent.com/denosaurs/netsaur/main/assets/netsaur.svg" width="80rem" /> <br/> <h1 align="center">Netsaur</h1> </p> <br/> <p align="center"> <a href="https://github.com/denosaurs/netsaur/stargazers"> <img alt="netsaur stars" src="https://img.shields.io/github/stars/denosaurs/netsaur?logo=" /> </a> <a href="https://github.com/denosaurs/netsaur/releases/latest/"> <img alt="netsaur releases" src="https://img.shields.io/github/v/release/denosaurs/netsaur?logo=github" /> </a> <a href="https://github.com/denosaurs/netsaur/blob/master/LICENSE"> <img alt="netsaur License" src="https://img.shields.io/github/license/denosaurs/netsaur?logo=" /> </a> </p> <hr/>

Powerful Machine Learning library for Deno

Installation

There is no installation step required. You can simply import the library and you're good to go :)

Features

Backends

Examples

Maintainers

QuickStart

This example shows how to train a neural network to predict the output of the XOR function our speedy CPU backend written in Rust.

import {
  Cost,
  CPU,
  DenseLayer,
  Sequential,
  setupBackend,
  SigmoidLayer,
  tensor2D,
} from "jsr:@denosaurs/netsaur";

/**
 * Setup the CPU backend. This backend is fast but doesn't work on the Edge.
 */
await setupBackend(CPU);

/**
 * Creates a sequential neural network.
 */
const net = new Sequential({
  /**
   * The number of minibatches is set to 4 and the output size is set to 2.
   */
  size: [4, 2],

  /**
   * The silent option is set to true, which means that the network will not output any logs during trainin
   */
  silent: true,

  /**
   * Defines the layers of a neural network in the XOR function example.
   * The neural network has two input neurons and one output neuron.
   * The layers are defined as follows:
   * - A dense layer with 3 neurons.
   * - sigmoid activation layer.
   * - A dense layer with 1 neuron.
   * -A sigmoid activation layer.
   */
  layers: [
    DenseLayer({ size: [3] }),
    SigmoidLayer(),
    DenseLayer({ size: [1] }),
    SigmoidLayer(),
  ],

  /**
   * The cost function used for training the network is the mean squared error (MSE).
   */
  cost: Cost.MSE,
});

/**
 * Train the network on the given data.
 */
net.train(
  [
    {
      inputs: tensor2D([
        [0, 0],
        [1, 0],
        [0, 1],
        [1, 1],
      ]),
      outputs: tensor2D([[0], [1], [1], [0]]),
    },
  ],
  /**
   * The number of iterations is set to 10000.
   */
  10000,
);

/**
 * Predict the output of the XOR function for the given inputs.
 */
const out1 = (await net.predict(tensor1D([0, 0]))).data;
console.log(`0 xor 0 = ${out1[0]} (should be close to 0)`);

const out2 = (await net.predict(tensor1D([1, 0]))).data;
console.log(`1 xor 0 = ${out2[0]} (should be close to 1)`);

const out3 = (await net.predict(tensor1D([0, 1]))).data;
console.log(`0 xor 1 = ${out3[0]} (should be close to 1)`);

const out4 = (await net.predict(tensor1D([1, 1]))).data;
console.log(`1 xor 1 = ${out4[0]} (should be close to 0)`);

Use the WASM Backend

By changing the CPU backend to the WASM backend we sacrifice some speed but this allows us to run on the edge.

import {
  Cost,
  DenseLayer,
  Sequential,
  setupBackend,
  SigmoidLayer,
  tensor1D,
  tensor2D,
  WASM,
} from "jsr:@denosaurs/netsaur";

/**
 * Setup the WASM backend. This backend is slower than the CPU backend but works on the Edge.
 */
await setupBackend(WASM);

/**
 * Creates a sequential neural network.
 */
const net = new Sequential({
  /**
   * The number of minibatches is set to 4 and the output size is set to 2.
   */
  size: [4, 2],

  /**
   * The silent option is set to true, which means that the network will not output any logs during trainin
   */
  silent: true,

  /**
   * Defines the layers of a neural network in the XOR function example.
   * The neural network has two input neurons and one output neuron.
   * The layers are defined as follows:
   * - A dense layer with 3 neurons.
   * - sigmoid activation layer.
   * - A dense layer with 1 neuron.
   * -A sigmoid activation layer.
   */
  layers: [
    DenseLayer({ size: [3] }),
    SigmoidLayer(),
    DenseLayer({ size: [1] }),
    SigmoidLayer(),
  ],

  /**
   * The cost function used for training the network is the mean squared error (MSE).
   */
  cost: Cost.MSE,
});

/**
 * Train the network on the given data.
 */
net.train(
  [
    {
      inputs: tensor2D([
        [0, 0],
        [1, 0],
        [0, 1],
        [1, 1],
      ]),
      outputs: tensor2D([[0], [1], [1], [0]]),
    },
  ],
  /**
   * The number of iterations is set to 10000.
   */
  10000,
);

/**
 * Predict the output of the XOR function for the given inputs.
 */
const out1 = (await net.predict(tensor1D([0, 0]))).data;
console.log(`0 xor 0 = ${out1[0]} (should be close to 0)`);

const out2 = (await net.predict(tensor1D([1, 0]))).data;
console.log(`1 xor 0 = ${out2[0]} (should be close to 1)`);

const out3 = (await net.predict(tensor1D([0, 1]))).data;
console.log(`0 xor 1 = ${out3[0]} (should be close to 1)`);

const out4 = (await net.predict(tensor1D([1, 1]))).data;
console.log(`1 xor 1 = ${out4[0]} (should be close to 0)`);

Documentation

The full documentation for Netsaur can be found here.

License

Netsaur is licensed under the MIT License.