Home

Awesome

<div align="center"> <a href="https://haystack.deepset.ai/"><img src="https://raw.githubusercontent.com/deepset-ai/haystack/main/docs/img/banner_20.png" alt="Green logo of a stylized white 'H' with the text 'Haystack, by deepset. Haystack 2.0 is live πŸŽ‰'Β Abstract green and yellow diagrams in the background."></a>
CI/CDTests types - Mypy Coverage Status Ruff
DocsWebsite
PackagePyPI PyPI - Downloads PyPI - Python Version Conda Version GitHub License Compliance
MetaDiscord Twitter Follow
</div>

Haystack is an end-to-end LLM framework that allows you to build applications powered by LLMs, Transformer models, vector search and more. Whether you want to perform retrieval-augmented generation (RAG), document search, question answering or answer generation, Haystack can orchestrate state-of-the-art embedding models and LLMs into pipelines to build end-to-end NLP applications and solve your use case.

Installation

The simplest way to get Haystack is via pip:

pip install haystack-ai

Install from the main branch to try the newest features:

pip install git+https://github.com/deepset-ai/haystack.git@main

Haystack supports multiple installation methods including Docker images. For a comprehensive guide please refer to the documentation.

Documentation

If you're new to the project, check out "What is Haystack?" then go through the "Get Started Guide" and build your first LLM application in a matter of minutes. Keep learning with the tutorials. For more advanced use cases, or just to get some inspiration, you can browse our Haystack recipes in the Cookbook.

At any given point, hit the documentation to learn more about Haystack, what can it do for you and the technology behind.

Features

[!IMPORTANT] You are currently looking at the readme of Haystack 2.0. We are still maintaining Haystack 1.x to give everyone enough time to migrate to 2.0. Switch to Haystack 1.x here.

Some examples of what you can do with Haystack:

[!TIP] <img src="https://github.com/deepset-ai/haystack/raw/main/docs/img/deepset-cloud-logo-lightblue.png" width=30% height=30%>

Are you looking for a managed solution that benefits from Haystack? deepset Cloud is our fully managed, end-to-end platform to integrate LLMs with your data, which uses Haystack for the LLM pipelines architecture.

πŸ”œ Visual Pipeline Editor

Use deepset Studio to visually create and export your Haystack pipeline architecture as a YAML or as Python code. Learn more about it in our announcement post.

studio

πŸ‘‰ Join the waitlist!

Telemetry

Haystack collects anonymous usage statistics of pipeline components. We receive an event every time these components are initialized. This way, we know which components are most relevant to our community.

Read more about telemetry in Haystack or how you can opt out in Haystack docs.

πŸ–– Community

If you have a feature request or a bug report, feel free to open an issue in Github. We regularly check these and you can expect a quick response. If you'd like to discuss a topic, or get more general advice on how to make Haystack work for your project, you can start a thread in Github Discussions or our Discord channel. We also check 𝕏 (Twitter) and Stack Overflow.

Contributing to Haystack

We are very open to the community's contributions - be it a quick fix of a typo, or a completely new feature! You don't need to be a Haystack expert to provide meaningful improvements. To learn how to get started, check out our Contributor Guidelines first.

There are several ways you can contribute to Haystack:

[!TIP] πŸ‘‰ Check out the full list of issues that are open to contributions

Who Uses Haystack

Here's a list of projects and companies using Haystack. Want to add yours? Open a PR, add it to the list and let the world know that you use Haystack!