Home

Awesome

RGB-stacking 🛑🟩🔷 for robotic manipulation

BLOG | PAPER | VIDEO

Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes,
Alex X. Lee*, Coline Devin*, Yuxiang Zhou*, Thomas Lampe*, Konstantinos Bousmalis*, Jost Tobias Springenberg*, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, Francesco Nori.
In Conference on Robot Learning (CoRL), 2021.

<img src="./doc/images/rgb_environment.png" alt="The RGB environment" width="500" height="400"/>

This repository contains an implementation of the simulation environment described in the paper "Beyond Pick-and-Place: Tackling robotic stacking of diverse shapes". Note that this is a re-implementation of the environment (to remove dependencies on internal libraries). As a result, not all the features described in the paper are available at this point. Noticeably, domain randomization is not included in this release. We also aim to provide reference performance metrics of trained policies on this environment in the near future.

In this environment, the agent controls a robot arm with a parallel gripper above a basket, which contains three objects — one red, one green, and one blue, hence the name RGB. The agent's task is to stack the red object on top of the blue object, within 20 seconds, while the green object serves as an obstacle and distraction. The agent controls the robot using a 4D Cartesian controller. The controlled DOFs are x, y, z and rotation around the z axis. The simulation is a MuJoCo environment built using the Modular Manipulation (MoMa) framework.

Corresponding method

The RGB-stacking paper "Beyond Pick-and-Place: Tackling robotic stacking of diverse shapes" also contains a description and thorough evaluation of our initial solution to both the 'Skill Mastery' (training on the 5 designated test triplets and evaluating on them) and the 'Skill Generalization' (training on triplets of training objects and evaluating on the 5 test triplets). Our approach was to first train a state-based policy in simulation via a standard RL algorithm (we used MPO) followed by interactive distillation of the state-based policy into a vision-based policy (using a domain randomized version of the environment) that we then deployed to the robot via zero-shot sim-to-real transfer. We finally improved the policy further via offline RL based on data collected from the sim-to-real policy (we used CRR). For details on our method and the results please consult the paper.

Released specialist policies

This repository includes state-based policies that were trained on this environment, which differs slightly from the internal one we used for the paper. These are 5 specialist policies, each one trained on one test triplet. They correspond to the Skill Mastery-State teacher in Table 1 of the manuscript and they achieve 75% stacking success on average. In detail, the stacking success of each agent over a run of 1000 episodes is (average of 2 seeds):

The policy weights in the directory assets/saved_model are made available under the terms of the Creative Commons Attribution 4.0 (CC BY 4.0) license. You may obtain a copy of the License at https://creativecommons.org/licenses/by/4.0/legalcode.

Installing and visualising the environment

Please ensure that you have a working MuJoCo200 installation and a valid MuJoCo licence.

  1. Clone this repository:

    git clone https://github.com/deepmind/rgb_stacking.git
    cd rgb_stacking
    
  2. Prepare a Python 3 environment - venv is recommended.

    python3 -m venv rgb_stacking_venv
    source rgb_stacking_venv/bin/activate
    
  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Run the environment viewer:

    python -m rgb_stacking.main
    

Step 2-4 can also be done by running the run.sh script:

./run.sh

By default, this loads the environment with a random test triplet and starts the viewer for visualisation. Alternatively, the object set can be specified with --object_triplet (see the relevant section for options).

Specifying one of the released specialist policies

You can also load the environment along with a specialist policy using the flag --policy_object_triplet. E.g. to execute the respective specialist in the environment with triplet 4 use the following command:

python -m rgb_stacking.main --object_triplet=rgb_test_triplet4 --policy_object_triplet=rgb_test_triplet4

Executing and visualising a policy in the viewer can be very slow. Alternatively, using launch_viewer=False will render the policy and save it as rendered_policy.mp4 in the current directory.

MUJOCO_GL=egl python -m rgb_stacking.main --launch_viewer=False --object_triplet=rgb_test_triplet4 --policy_object_triplet=rgb_test_triplet4

Specifying the object triplet

The default environment will load with a random test triplet (see Sect. 3.2.1 in the paper). If you wish to use a different triplet you can use the following commands:

from rgb_stacking import environment

env = environment.rgb_stacking(object_triplet=NAME_OF_TRIPLET)

The possible NAME_OF_TRIPLET are:

For more information on the blocks and the possible options, please refer to the rgb_objects repository.

Specifying the observation space

By default, the observations exposed by the environment are only the ones we used for training our state-based agents. To use another set of observations please use the following code snippet:

from rgb_stacking import environment

env = environment.rgb_stacking(
 observations=environment.ObservationSet.CHOSEN_SET)

The possible CHOSEN_SET are:

Real RGB-Stacking Environment: CAD models and assembly instructions

The CAD model of the setup is available in onshape.

We also provide the following documents for the assembly of the real cell:

The RGB-objects themselves can be 3D-printed using the STLs available in the rgb_objects repository.

Citing

If you use rgb_stacking in your work, please cite the accompanying paper:

@inproceedings{lee2021rgbstacking,
    title={Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes},
    author={Alex X. Lee and
            Coline Devin and
            Yuxiang Zhou and
            Thomas Lampe and
            Konstantinos Bousmalis and
            Jost Tobias Springenberg and
            Arunkumar Byravan and
            Abbas Abdolmaleki and
            Nimrod Gileadi and
            David Khosid and
            Claudio Fantacci and
            Jose Enrique Chen and
            Akhil Raju and
            Rae Jeong and
            Michael Neunert and
            Antoine Laurens and
            Stefano Saliceti and
            Federico Casarini and
            Martin Riedmiller and
            Raia Hadsell and
            Francesco Nori},
    booktitle={Conference on Robot Learning (CoRL)},
    year={2021},
    url={https://openreview.net/forum?id=U0Q8CrtBJxJ}
}
<!-- Hyperlinks -->