Awesome
KDD 2019 Paper
DeepUrbanEvent: <br> A System for Predicting Citywide Crowd Dynamics at Big Events
Outline
Under the situations of big events, citywide crowd dynamics would manifest some different patterns from the normal routine. In this study, we propose a highly deployable system to extract the trend from momentary changes, and leverage multitask learning to predict crowd density and crowd flows simultaneously.
<p align="center"><img src="figures/earthquake.png" width="50%" height="50%"></p> <h4 align="center">Fig 1. Sudden change of human mobility in Tokyo before and after the Great East Japan Earthquake</h4> <p align="center"><img src="figures/problem.png" width="50%" height="50%"></p> <h4 align="center">Fig 2. Crowd dynamics prediction</h4> <p align="center"><img src="figures/multitask_convlstm.png"></p> <h4 align="center">Fig 3. Multitask ConvLSTM encoder-decoder for simultaneous multi-step prediction</h4>Directories
├── common # Parameters, data_utils
├── crowdFlowEncoder # CNN autoencoder for crowd flow
├── meshdynamic # meshgrid use
├── predCrowdDensity # baselines for predicting crowd density
│ ├── Historical Average
│ ├── Copy Last Frame
│ ├── ARIMA
│ ├── VAR
│ ├── ST-ResNet
│ ├── CNN / CNN enc-dec.
│ └── ConvLSTM / ConvLSTM enc-dec.
├── predCrowdEncodedFlow # baselines for predicting encoded crowd flows
│ ├── Historical Average
│ ├── Copy Last Frame
│ ├── ST-ResNet
│ ├── CNN / CNN enc-dec.
│ └── ConvLSTM / ConvLSTM enc-dec.
└── predMultitask(Ours)
├── Multitask CNN enc-dec.
└── Multitask ConvLSTM enc-dec. # our proposed model
Dependencies
Here are the working environment and major dependencies we run the code:
- Ubuntu 16.04.6 LTS
- Python 3 (>= 3.5; Anaconda Distribution)
- SciPy (>= 0.17.0)
- statsmodels (>= 0.8.0)
- NumPy (>= 1.11.0)
- pandas (>= 0.18.0)
- TensorFlow/tensorflow-gpu (>= 1.3.0; <= 1.14.0)
- Keras (>= 2.0.8)
Citation
If you find anything in this repository useful to your research, please cite our paper :) We sincerely appreciate it. DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events
@inproceedings{jiang2019deepurbanevent,
title={DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events},
author={Jiang, Renhe and Song, Xuan and Huang, Dou and Song, Xiaoya and Xia, Tianqi and Cai, Zekun and Wang, Zhaonan and Kim, Kyoung-Sook and Shibasaki, Ryosuke},
booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={2114--2122},
year={2019},
organization={ACM}
}