Home

Awesome

SwiftGraph

Swift Versions CocoaPods Version Carthage Compatible SPM Compatible CocoaPods Platforms Linux Compatible Twitter Contact Build Status Maintainability Test Coverage

SwiftGraph is a pure Swift (no Cocoa) implementation of a graph data structure, appropriate for use on all platforms Swift supports (iOS, macOS, Linux, etc.). It includes support for weighted, unweighted, directed, and undirected graphs. It uses generics to abstract away both the type of the vertices, and the type of the weights.

It includes copious in-source documentation, unit tests, as well as search functions for doing things like breadth-first search, depth-first search, and Dijkstra's algorithm. Further, it includes utility functions for topological sort, Jarnik's algorithm to find a minimum-spanning tree, detecting a DAG (directed-acyclic-graph), enumerating all cycles, and more.

Installation

SwiftGraph 3.0 and above requires Swift 5 (Xcode 10.2). Use SwiftGraph 2.0 for Swift 4.2 (Xcode 10.1) support, SwiftGraph 1.5.1 for Swift 4.1 (Xcode 9), SwiftGraph 1.4.1 for Swift 3 (Xcode 8), SwiftGraph 1.0.6 for Swift 2 (Xcode 7), and SwiftGraph 1.0.0 for Swift 1.2 (Xcode 6.3) support. SwiftGraph supports GNU/Linux and is tested on it.

CocoaPods

Use the CocoaPod SwiftGraph.

Carthage

Add the following to your Cartfile:

github "davecom/SwiftGraph" ~> 3.1

Swift Package Manager (SPM)

Use this repository as your dependency.

Manual

Copy all of the sources in the Sources folder into your project.

Tips and Tricks

Example

For more detail, checkout the Documentation section, but this example building up a weighted graph of American cities and doing some operations on it, should get you started.

let cityGraph: WeightedGraph<String, Int> = WeightedGraph<String, Int>(vertices: ["Seattle", "San Francisco", "Los Angeles", "Denver", "Kansas City", "Chicago", "Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston"])

cityGraph is a WeightedGraph with String vertices and Int weights on its edges.

cityGraph.addEdge(from: "Seattle", to:"Chicago", weight:2097)
cityGraph.addEdge(from: "Seattle", to:"Chicago", weight:2097)
cityGraph.addEdge(from: "Seattle", to: "Denver", weight:1331)
cityGraph.addEdge(from: "Seattle", to: "San Francisco", weight:807)
cityGraph.addEdge(from: "San Francisco", to: "Denver", weight:1267)
cityGraph.addEdge(from: "San Francisco", to: "Los Angeles", weight:381)
cityGraph.addEdge(from: "Los Angeles", to: "Denver", weight:1015)
cityGraph.addEdge(from: "Los Angeles", to: "Kansas City", weight:1663)
cityGraph.addEdge(from: "Los Angeles", to: "Dallas", weight:1435)
cityGraph.addEdge(from: "Denver", to: "Chicago", weight:1003)
cityGraph.addEdge(from: "Denver", to: "Kansas City", weight:599)
cityGraph.addEdge(from: "Kansas City", to: "Chicago", weight:533)
cityGraph.addEdge(from: "Kansas City", to: "New York", weight:1260)
cityGraph.addEdge(from: "Kansas City", to: "Atlanta", weight:864)
cityGraph.addEdge(from: "Kansas City", to: "Dallas", weight:496)
cityGraph.addEdge(from: "Chicago", to: "Boston", weight:983)
cityGraph.addEdge(from: "Chicago", to: "New York", weight:787)
cityGraph.addEdge(from: "Boston", to: "New York", weight:214)
cityGraph.addEdge(from: "Atlanta", to: "New York", weight:888)
cityGraph.addEdge(from: "Atlanta", to: "Dallas", weight:781)
cityGraph.addEdge(from: "Atlanta", to: "Houston", weight:810)
cityGraph.addEdge(from: "Atlanta", to: "Miami", weight:661)
cityGraph.addEdge(from: "Houston", to: "Miami", weight:1187)
cityGraph.addEdge(from: "Houston", to: "Dallas", weight:239)

Convenience methods are used to add WeightedEdge connections between various vertices.

let (distances, pathDict) = cityGraph.dijkstra(root: "New York", startDistance: 0)
var nameDistance: [String: Int?] = distanceArrayToVertexDict(distances: distances, graph: cityGraph)
// shortest distance from New York to San Francisco
let temp = nameDistance["San Francisco"] 
// path between New York and San Francisco
let path: [WeightedEdge<Int>] = pathDictToPath(from: cityGraph.indexOfVertex("New York")!, to: cityGraph.indexOfVertex("San Francisco")!, pathDict: pathDict)
let stops: [String] = cityGraph.edgesToVertices(edges: path)

The shortest paths are found between various vertices in the graph using Dijkstra's algorithm.

let mst = cityGraph.mst()

The minimum spanning tree is found connecting all of the vertices in the graph.

let cycles = cityGraph.detectCycles()

All of the cycles in cityGraph are found.

let isADAG = cityGraph.isDAG

isADAG is false because cityGraph is not found to be a Directed Acyclic Graph.

let result = cityGraph.findAll(from: "New York") { v in
    return v.characters.first == "S"
}

A breadth-first search is performed, starting from New York, for all cities in cityGraph that start with the letter "S."

SwiftGraph contains many more useful features, but hopefully this example was a nice quickstart.

Documentation

There is a large amount of documentation in the source code using the latest Apple documentation technique—so you should be able to just alt-click a method name to get a lot of great information about it in Xcode. We also use Jazzy to produce HTML Docs. In addition, here's an overview of each of SwiftGraph's components:

Edges

Edges connect the vertices in your graph to one another.

Graphs

Graphs are the data structures at the heart of SwiftGraph. All vertices are assigned an integer index when they are inserted into a graph and it's generally faster to refer to them by their index than by the vertex's actual object.

Graphs implement the standard Swift protocols Collection (for iterating through all vertices and for grabbing a vertex by its index through a subscript) and Codable . For instance, the following example prints all vertices in a Graph on separate lines:

for v in g {  // g is a Graph<String>
    print(v)
}

And we can grab a specific vertex by its index using a subscript

print(g[23]) // g is a Graph<String>

Note: At this time, graphs are not thread-safe. However, once a graph is constructed, if you will only be doing lookups and searches through it (no removals of vertices/edges and no additions of vertices/edges) then you should be able to do that from multiple threads. A fully thread-safe graph implementation is a possible future direction.

Search

Search methods are defined in extensions of Graph and WeightedGraph in Search.swift.

Sort & Miscellaneous

An extension to Graph in Sort.swift provides facilities for topological sort and detecting a DAG.

An extension to WeightedGraph in MST.swift can find a minimum-spanning tree from a weighted graph.

An extension to Graph in Cycles.swift finds all of the cycles in a graph.

An extension to Graph in Reversed.swift reverses all of the edges in a graph.

Authorship, License, & Contributors

SwiftGraph is written by David Kopec and other contributors (see CONTRIBUTORS.md). It is released under the Apache License (see LICENSE). You can find my email address on my GitHub profile page. I encourage you to submit pull requests and open issues here on GitHub.

I would like to thank all of the contributors who have helped improve SwiftGraph over the years, and have kept me motivated. Contributing to SwiftGraph, in-line with the Apache license, means also releasing your contribution under the same license as the original project. However, the Apache license is permissive, and you are free to include SwiftGraph in a commercial, closed source product as long as you give it & its author credit (in fact SwiftGraph has already found its way into several products). See LICENSE for details.

If you use SwiftGraph in your product, please let me know by getting in touch with me. It's just cool to know.

Future Direction

Future directions for this project to take could include: