Home

Awesome

AdaHessian 🚀

Unofficial implementation of the AdaHessian optimizer. Created as a drop-in replacement for any PyTorch optimizer – you only need to set create_graph=True in the backward() call and everything else should work 🥳

Our version supports multiple param_groups, distributed training, delayed Hessian updates and more precise approximation of the Hessian trace.

Usage

from ada_hessian import AdaHessian
...
model = YourModel()
optimizer = AdaHessian(model.parameters())
...
for input, output in data:
  optimizer.zero_grad()
  loss = loss_function(output, model(input))
  loss.backward(create_graph=True)  # this is the important line! 🧐
  optimizer.step()
...
<br>

Documentation

AdaHessian.__init__

ArgumentDescription
params (iterable)iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional)learning rate (default: 0.1)
betas((float, float), optional)coefficients used for computing running averages of gradient and the squared hessian trace (default: (0.9, 0.999))
eps (float, optional)term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional)weight decay (L2 penalty) (default: 0.0)
hessian_power (float, optional)exponent of the hessian trace (default: 1.0)
update_each (int, optional)compute the hessian trace approximation only after this number of steps (to save time) (default: 1)
n_samples (int, optional)how many times to sample z for the approximation of the hessian trace (default: 1)
average_conv_kernel (bool, optional)average out the hessian traces of convolutional kernels as in the original paper (default: false)
<br>

AdaHessian.step

Performs a single optimization step.

ArgumentDescription
closure (callable, optional)a closure that reevaluates the model and returns the loss (default: None)