Awesome
<div align="center"> <img src="docs/images/logo-title.svg" width="100%"> </div> <p align="center"> <b>datamol - molecular processing made easy</b> <br /> </p> <p align="center"> <a href="https://docs.datamol.io/stable/" target="_blank"> Docs </a> | <a href="https://datamol.io/" target="_blank"> Homepage </a> </p>Datamol is a python library to work with molecules. It's a layer built on top of RDKit and aims to be as light as possible.
- đ Simple pythonic API
- âī¸ RDKit first: all you manipulate are
rdkit.Chem.Mol
objects. - â Manipulating molecules often relies on many options; Datamol provides good defaults by design.
- đ§ Performance matters: built-in efficient parallelization when possible with an optional progress bar.
- đšī¸ Modern IO: out-of-the-box support for remote paths using
fsspec
to read and write multiple formats (sdf, xlsx, csv, etc).
Try Online
Documentation
Visit https://docs.datamol.io.
Installation
Use conda:
mamba install -c conda-forge datamol
Quick API Tour
import datamol as dm
# Common functions
mol = dm.to_mol("O=C(C)Oc1ccccc1C(=O)O", sanitize=True)
fp = dm.to_fp(mol)
selfies = dm.to_selfies(mol)
inchi = dm.to_inchi(mol)
# Standardize and sanitize
mol = dm.to_mol("O=C(C)Oc1ccccc1C(=O)O")
mol = dm.fix_mol(mol)
mol = dm.sanitize_mol(mol)
mol = dm.standardize_mol(mol)
# Dataframe manipulation
df = dm.data.freesolv()
mols = dm.from_df(df)
# 2D viz
legends = [dm.to_smiles(mol) for mol in mols[:10]]
dm.viz.to_image(mols[:10], legends=legends)
# Generate conformers
smiles = "O=C(C)Oc1ccccc1C(=O)O"
mol = dm.to_mol(smiles)
mol_with_conformers = dm.conformers.generate(mol)
# 3D viz (using nglview)
dm.viz.conformers(mol, n_confs=10)
# Compute SASA from conformers
sasa = dm.conformers.sasa(mol_with_conformers)
# Easy IO
mols = dm.read_sdf("s3://my-awesome-data-lake/smiles.sdf", as_df=False)
dm.to_sdf(mols, "gs://data-bucket/smiles.sdf")
How to cite
Please cite Datamol if you use it in your research: .
Compatibilities
Version compatibilities are an essential topic for production-software stacks. We are cautious about documenting compatibility between datamol
, python
and rdkit
.
See below the associated versions of Python and RDKit, for which a minor version of Datamol has been tested during its whole lifecycle. It does not mean other combinations does not work but that those are not tested.
datamol | python | rdkit |
---|---|---|
0.12.x | [3.10, 3.11] | [2023.03, 2023.09] |
0.11.x | [3.9, 3.10, 3.11] | [2022.09, 2023.03] |
0.10.x | [3.9, 3.10, 3.11] | [2022.03, 2022.09] |
0.9.x | [3.9, 3.10, 3.11] | [2022.03, 2022.09] |
0.8.x | [3.8, 3.9, 3.10] | [2021.09, 2022.03, 2022.09] |
0.7.x | [3.8, 3.9] | [2021.09, 2022.03] |
0.6.x | [3.8, 3.9] | [2021.09] |
0.5.x | [3.8, 3.9] | [2021.03, 2021.09] |
0.4.x | [3.8, 3.9] | [2020.09, 2021.03] |
0.3.x | [3.8, 3.9] | [2020.09, 2021.03] |
CI Status
The CI runs tests and performs code quality checks for the following combinations:
- The three major platforms: Windows, OSX and Linux.
- The two latest Python versions.
- The two latest RDKit versions.
main | |
---|---|
Lib build & Testing | |
Code Sanity (linting and type analysis) | |
Documentation Build |
License
Under the Apache-2.0 license. See LICENSE.