Home

Awesome

Masked Wavelet Representation for Compact Neural Radiance Fields

Daniel Rho*, Byeonghyeon Lee*, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko†, and Eunbyung Park†, <strong>CVPR 2023</strong>

Project Page, Paper(arxiv)

Our code is based on TensoRF (https://github.com/apchenstu/TensoRF).

Our method, however, can be applied to <strong>any 2D grid-based neural fields</strong>.

Tested on Ubuntu 18.04 + Pytorch 1.10.2

0. Requirements

conda create -n MaskDWT python=3.8
conda activate MaskDWT
pip install torch torchvision
pip install tqdm scikit-image opencv-python configargparse lpips imageio-ffmpeg kornia lpips tensorboard

0.1 Installing pytorch_wavelets

git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .

1. Training

python3 train.py --config=configs/chair.txt --use_mask --mask_weight=1e-10 --grid_bit=8 --use_dwt --dwt_level=4

More details can be found in "opt.py"

2. Model Compression

python3 compress.py --compress=1 --compress_levelwise=1 --ckpt=PATH_TO_CHECKPOINT

3. Decompression and Evaluation

python3 compress.py --decompress=1 --decompress_levelwise=1 --config=configs/chair.txt --ckpt=PATH_TO_CHECKPOINT

4. Bibtex

@InProceedings{Rho_2023_CVPR,
    author    = {Rho, Daniel and Lee, Byeonghyeon and Nam, Seungtae and Lee, Joo Chan and Ko, Jong Hwan and Park, Eunbyung},
    title     = {Masked Wavelet Representation for Compact Neural Radiance Fields},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2023},
    pages     = {20680-20690}
}