Awesome
Implement of Deep Multi-attribute Recognition model under ResNet50 backbone network
Preparation
<font face="Times New Roman" size=4>Prerequisite: Python 2.7 and Pytorch 0.3.1
-
Install Pytorch
-
Download and prepare the dataset as follow:
a. PETA Baidu Yun, passwd: 5vep, or Google Drive.
./dataset/peta/images/*.png ./dataset/peta/PETA.mat ./dataset/peta/README
python script/dataset/transform_peta.py
b. RAP Google Drive.
./dataset/rap/RAP_dataset/*.png ./dataset/rap/RAP_annotation/RAP_annotation.mat
python script/dataset/transform_rap.py
c. PA100K Links
./dataset/pa100k/data/*.png ./dataset/pa100k/annotation.mat
python script/dataset/transform_pa100k.py
d. RAP(v2) Links.
./dataset/rap2/RAP_dataset/*.png ./dataset/rap2/RAP_annotation/RAP_annotation.mat
python script/dataset/transform_rap2.py
Train the model
<font face="Times New Roman" size=4>sh script/experiment/train.sh
</font>
Test the model
<font face="Times New Roman" size=4>sh script/experiment/test.sh
</font>
Demo
<font face="Times New Roman" size=4>python script/experiment/demo.py
</font>
Citation
<font face="Times New Roman" size=4> Please cite this paper in your publications if it helps your research: </font>@inproceedings{li2015deepmar,
author = {Dangwei Li and Xiaotang Chen and Kaiqi Huang},
title = {Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios},
booktitle = {ACPR},
pages={111--115},
year = {2015}
}
Thanks
<font face="Times New Roman" size=4>Partial codes are based on the repository from Houjing Huang.
The code should only be used for academic research.
</font>