Awesome
Visformer
Introduction
This is a pytorch implementation for the Visformer models. This project is based on the training code in DeiT and the tools in timm.
Usage
Clone the repository:
git clone https://github.com/danczs/Visformer.git
Install pytorch, timm and einops:
pip install -r requirements.txt
Data Preparation
The layout of Imagenet data:
/path/to/imagenet/
train/
class1/
img1.jpeg
class2/
img2.jpeg
val/
class1/
img1.jpeg
class2/
img2.jpeg
Network Training
Visformer_small
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model visformer_small --batch-size 64 --data-path /path/to/imagenet --output_dir /path/to/save
Visformer_tiny
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model visformer_tiny --batch-size 256 --drop-path 0.03 --data-path /path/to/imagenet --output_dir /path/to/save
Viformer V2 models
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model swin_visformer_small_v2 --batch-size 64 --data-path /path/to/imagenet --output_dir /path/to/save --amp --qk-scale-factor=-0.5
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model swin_visformer_tiny_v2 --batch-size 256 --drop-path 0.03 --data-path /path/to/imagenet --output_dir /path/to/save --amp --qk-scale-factor=-0.5
The model performance:
model | top-1 (%) | FLOPs (G) | paramters (M) |
---|---|---|---|
Visformer_tiny | 78.6 | 1.3 | 10.3 |
Visformer_tiny_V2 | 79.6 | 1.3 | 9.4 |
Visformer_small | 82.2 | 4.9 | 40.2 |
Visformer_small_V2 | 83.0 | 4.3 | 23.6 |
Visformer_medium_V2 | 83.6 | 8.5 | 44.5 |
pre-trained models:
model | model | log | top-1 (%) |
---|---|---|---|
Visformer_small (original) | github | github | 82.21 |
Visformer_small (+ Swin for downstream tasks) | github | github | 82.34 |
Visformer_small_v2 (+ Swin for downstream tasks) | github | github | 83.00 |
Visformer_medium_v2 (+ Swin for downstream tasks) | github | github | 83.62 |
(In some logs, the model is only tested for the last 50 epochs to save the training time.)
More information about Visformer V2.
Object Detection on COCO
The standard self-attention is not efficient for high-reolution inputs, so we simply replace the standard self-attention with Swin-attention for object detection. Therefore, Swin Transformer is our directly baseline.
Mask R-CNN
Backbone | sched | box mAP | mask mAP | params | FLOPs | FPS |
---|---|---|---|---|---|---|
Swin-T | 1x | 42.6 | 39.3 | 48 | 267 | 14.8 |
Visformer-S | 1x | 43.0 | 39.6 | 60 | 275 | 13.1 |
VisformerV2-S | 1x | 44.8 | 40.7 | 43 | 262 | 15.2 |
Swin-T | 3x + MS | 46.0 | 41.6 | 48 | 367 | 14.8 |
VisformerV2-S | 3x + MS | 47.8 | 42.5 | 43 | 262 | 15.2 |
Cascade Mask R-CNN
Backbone | sched | box mAP | mask mAP | params | FLOPs | FPS |
---|---|---|---|---|---|---|
Swin-T | 1x + MS | 48.1 | 41.7 | 86 | 745 | 9.5 |
VisformerV2-S | 1x + MS | 49.3 | 42.3 | 81 | 740 | 9.6 |
Swin-T | 3x + MS | 50.5 | 43.7 | 86 | 745 | 9.5 |
VisformerV2-S | 3x + MS | 51.6 | 44.1 | 81 | 740 | 9.6 |
This repo only contains the key files for object detection ('./ObjectDetction'). Swin-Visformer-Object-Detection is the full detection project.
Pre-trained Model
Beacause of the policy of our institution, we cannot send the pre-trained models out directly. Thankfully, @hzhang57 and @developer0hye provides Visformer_small and Visformer_tiny models trained by themselves.
Automatic Mixed Precision (amp)
In the original version of Visformer, amp can cause NaN values. We find that the overflow comes from the attention mask:
scale = head_dim ** -0.5
attn = ( q @ k.transpose(-2,-1) ) * scale
To avoid overflow, we pre-normalize q & k, and, thus, overall normalize 'attn' with 'head_dim' instead of 'head_dim ** 0.5':
scale = head_dim ** -0.5
attn = (q * scale) @ (k.transpose(-2,-1) * scale)
Amp training:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model visformer_small --batch-size 64 --data-path /path/to/imagenet --output_dir /path/to/save --amp --qk-scale-factor=-0.5
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model visformer_tiny --batch-size 256 --drop-path 0.03 --data-path /path/to/imagenet --output_dir /path/to/save --amp --qk-scale-factor=-0.5
This change won't degrade the training performance.
Using amp for the original pre-trained models:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model visformer_small --batch-size 64 --data-path /path/to/imagenet --output_dir /path/to/save --eval --resume /path/to/weights --amp
Citing
@inproceedings{chen2021visformer,
title={Visformer: The vision-friendly transformer},
author={Chen, Zhengsu and Xie, Lingxi and Niu, Jianwei and Liu, Xuefeng and Wei, Longhui and Tian, Qi},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={589--598},
year={2021}
}