Awesome
Swin Visformer for Object Detection
This repo contains the code of object detection for Visformer. It is based on Swin Transformer and mmdetection.
Object Detection on COCO
The standard self-attention is not efficient for high-reolution inputs, so we simply replace the standard self-attention with Swin attention for object detection. Therefore, Swin Transformer is our directly baseline.
Mask R-CNN
Backbone | sched | box mAP | mask mAP | params | FLOPs | FPS |
---|---|---|---|---|---|---|
Swin-T | 1x | 42.6 | 39.3 | 48 | 267 | 14.8 |
Visformer-S | 1x | 43.0 | 39.6 | 60 | 275 | 13.1 |
VisformerV2-S | 1x | 44.8 | 40.7 | 43 | 262 | 15.2 |
Swin-T | 3x + MS | 46.0 | 41.6 | 48 | 367 | 14.8 |
VisformerV2-S | 3x + MS | 47.8 | 42.5 | 43 | 262 | 15.2 |
Cascade Mask R-CNN
Backbone | sched | box mAP | mask mAP | params | FLOPs | FPS |
---|---|---|---|---|---|---|
Swin-T | 1x + MS | 48.1 | 41.7 | 86 | 745 | 9.5 |
VisformerV2-S | 1x + MS | 49.3 | 42.3 | 81 | 740 | 9.6 |
Swin-T | 3x + MS | 50.5 | 43.7 | 86 | 745 | 9.5 |
VisformerV2-S | 3x + MS | 51.6 | 44.1 | 81 | 740 | 9.6 |
Usage
(Inherited from Swin Transformer)
Installation
Please refer to get_started.md for installation and dataset preparation. (mmcv == 1.3.9)
Inference
# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm
# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm
Training
To train a detector with pre-trained models, run:
# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
For example, to train a Cascade Mask R-CNN model with a VisformerV2_S backbone and 8 gpus, run:
tools/dist_train.sh configs/swin_visformer/cascade_mask_rcnn_swin_visformer_small_v2_mstrain_480-800_adamw_3x_coco.py 8 --cfg-options model.pretrained=<PRETRAIN_MODEL>
Note: use_checkpoint
is used to save GPU memory. Please refer to this page for more details.
Apex (optional):
We use apex for mixed precision training by default. To install apex, run:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
If you would like to disable apex, modify the type of runner as EpochBasedRunner
and comment out the following code block in the configuration files:
# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
type="DistOptimizerHook",
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
use_fp16=True,
)
Other Links
Visformer for Classification: See Visformer for Image Classification.