Awesome
🎓 Machine Learning Course Notes
A place to collaborate and share lecture notes on all topics related to machine learning, NLP, and AI.
WIP
denotes work in progress.
Machine Learning Specialization (2022)
Website | Instructor: Andrew Ng
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Introduction to Machine Learning</td> <td class="tg-yw4l">Supervised Machine Learning: Regression and Classification</td> <td class="tg-yw4l"><a href="https://www.coursera.org/learn/machine-learning?specialization=machine-learning-introduction">Videos<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Course-1-Supervised-Machine-Learning-3a200719f58145dc8a701a2545bdf9f4">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Advanced Learning Algorithms</td> <td class="tg-yw4l">Advanced Learning Algorithms</td> <td class="tg-yw4l"><a href="https://www.coursera.org/learn/advanced-learning-algorithms?specialization=machine-learning-introduction">Videos<a></td> <td class="tg-yw4l">WIP</td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Unsupervised Learning, Recommenders, Reinforcement Learning</td> <td class="tg-yw4l">Unsupervised Learning, Recommenders, Reinforcement Learning</td> <td class="tg-yw4l"><a href="https://www.coursera.org/learn/unsupervised-learning-recommenders-reinforcement-learning?specialization=machine-learning-introduction">Videos<a></td> <td class="tg-yw4l">WIP</td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>MIT 6.S191 Introduction to Deep Learning (2022)
Website | Lectures by: Alexander Amini and Ava Soleimany
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Introduction to Deep Learning</td> <td class="tg-yw4l">Basic fundamentals of neural networks and deep learning.</td> <td class="tg-yw4l"><a href="https://youtu.be/7sB052Pz0sQ">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-1-Intro-to-DL-d4929997a7a34a33a163cf40ba00360b">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">RNNs and Transformers</td> <td class="tg-yw4l">Introduction to recurrent neural networks and transformers.</td> <td class="tg-yw4l"><a href="https://youtu.be/QvkQ1B3FBqA">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-2-Recurrent-Neural-Networks-and-Transformers-71fb3ba2a24f4b6c8cc77281fc19cfab">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Deep Computer Vision</td> <td class="tg-yw4l">Deep Neural Networks for Computer Vision.</td> <td class="tg-yw4l"><a href="https://youtu.be/uapdILWYTzE">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-3-Deep-Computer-Vision-e43a17b50f7e4b5f8393c070b22340a3">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Deep Generative Modeling</td> <td class="tg-yw4l">Autoencoders and GANs.</td> <td class="tg-yw4l"><a href="https://youtu.be/QcLlc9lj2hk">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-4-Deep-Generative-Modeling-928d24a5764d4bf1bcf5fb4c4234f6ac">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Deep Reinforcement Learning</td> <td class="tg-yw4l">Deep RL key concepts and DQNs.</td> <td class="tg-yw4l"><a href="https://youtu.be/-WbN61qtTGQ">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-5-Deep-Reinforcement-Learning-8ecc8b16a5ad4fcc81b5c3ceb21608b5">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>CMU Neural Nets for NLP (2021)
Website | Instructor: Graham Neubig
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Introduction to Simple Neural Networks for NLP</td> <td class="tg-yw4l">Provides an introduction to neural networks for NLP covering concepts like BOW, CBOW, and Deep CBOW</td> <td class="tg-yw4l"><a href="https://www.youtube.com/watch?v=vnx6M7N-ggs&ab_channel=GrahamNeubig">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-1-Introduction-to-Simple-Neural-Networks-for-NLP-b7afa29af56e4d47a75fbcf3b82407db">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>CS224N: Natural Language Processing with Deep Learning (2022)
Website | Instructor: C‪hristopher Manning
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Introduction and Word Vectors</td> <td class="tg-yw4l">Introduction to NLP and Word Vectors.</td> <td class="tg-yw4l"><a href="https://youtu.be/rmVRLeJRkl4">Video<a></td> <td class="tg-yw4l"><a href="https://dair-ai.notion.site/Lecture-1-Introduction-and-Word-Vectors-afdc392dd83e44faab91f7c1b8f563a0">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Neural Classifiers</td> <td class="tg-yw4l">Neural Classifiers for NLP.</td> <td class="tg-yw4l"><a href="https://youtu.be/gqaHkPEZAew">Video<a></td> <td class="tg-yw4l"><a href="https://github.com/dair-ai/ML-Course-Notes/issues/4">WIP</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>CS25: Transformers United
Website | Instructors: Div Garg, Chetanya Rastogi, Advay Pal
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Introduction to Transformers</td> <td class="tg-yw4l">A short summary of attention and Transformers.</td> <td class="tg-yw4l"><a href="https://youtu.be/P127jhj-8-Y">Video<a></td> <td class="tg-yw4l"><a href="https://www.notion.so/dair-ai/Introduction-to-Transformers-4b869c9595b74f72b088e5f2793ece80">Notes</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Transformers in Language: GPT-3, Codex</td> <td class="tg-yw4l">The development of GPT Models including GPT3.</td> <td class="tg-yw4l"><a href="https://youtu.be/qGkzHFllWDY">Video<a></td> <td class="tg-yw4l">WIP</td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>Neural Networks: Zero to Hero
Lectures | Instructors: Andrej Karpathy
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Let's build GPT: from scratch, in code, spelled out</td> <td class="tg-yw4l">Detailed walkthrough of GPT</td> <td class="tg-yw4l"><a href="https://youtube.com/watch?v=kCc8FmEb1nY&feature=sharesY">Video<a></td> <td class="tg-yw4l"><a href="">WIP</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>Miscellaneous Lectures
<table class="tg"> <tr> <th class="tg-yw4l"><b>Lecture</b></th> <th class="tg-yw4l"><b>Description</b></th> <th class="tg-yw4l"><b>Video</b></th> <th class="tg-yw4l"><b>Notes</b></th> <th class="tg-yw4l"><b>Author</b></th> </tr> <tr> <td class="tg-yw4l">Introduction to Diffusion Models</td> <td class="tg-yw4l">Technical overview of Diffusion Models</td> <td class="tg-yw4l"><a href="">Video<a></td> <td class="tg-yw4l"><a href="">WIP</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> <tr> <td class="tg-yw4l">Reinforcement Learning from Human Feedback (RLHF)</td> <td class="tg-yw4l">Overview of RLHF</td> <td class="tg-yw4l"><a href="">Video<a></td> <td class="tg-yw4l"><a href="">WIP</a></td> <td class="tg-yw4l"><a href="https://twitter.com/omarsar0">Elvis<a></td> </tr> </table>How To Contribute
- Identify a course and lecture from this list. If you are working on notes for a lecture, please indicate by opening an issue. This avoids duplicate work.
- Write your notes, preferably in a Google document, Notion document, or GitHub repo.
- We care about quality, so make sure to revise your notes before submitting.
- Once you are finished, open a PR here.
If you have any questions, open an issue or reach out to me on Twitter.
Join our Discord.