Awesome
Generative Flow Networks as Entropy-Regularized RL
Official code for the paper Generative Flow Networks as Entropy-Regularized RL.
Daniil Tiapkin*, Nikita Morozov*, Alexey Naumov, Dmitry Vetrov.
Installation
- Create conda environment:
conda create -n gflownet-rl python=3.10
conda activate gflownet-rl
- Install PyTorch with CUDA. For our experiments we used the following versions:
conda install pytorch==2.0.0 torchvision==0.15.0 pytorch-cuda=11.8 -c pytorch -c nvidia
You can change pytorch-cuda=11.8
with pytorch-cuda=XX.X
to match your version of CUDA
.
- Install core dependencies:
pip install -r requirements.txt
-(Optional) Install dependencies for molecule experiemtns
pip install -r requirements_mols.txt
You can change requirements_mols.txt
to match your CUDA
version by replacing cu118
by cuXXX
.
Hypergrids
Code for this part heavily utlizes library torchgfn
(https://github.com/GFNOrg/torchgfn).
Path to configurations (utlizes ml-collections
library):
- General configuration:
hypergrid/experiments/config/general.py
- Algorithm:
hypergrid/experiments/config/algo.py
- Environment:
hypergrid/experiments/config/hypergrid.py
List of available algorithms:
- Baselines:
db
,tb
,subtb
fromtorchgfn
library; - Soft RL algorithms:
soft_dqn
,munchausen_dqn
,sac
.
Example of running the experiment on environment with height=20
, ndim=4
with standard
rewards, seed 3
on the algorithm soft_dqn
.
python run_hypergrid_exp.py --general experiments/config/general.py:3 --env experiments/config/hypergrid.py:standard --algo experiments/config/algo.py:soft_dqn --env.height 20 --env.ndim 4
To activate learnable backward policy for this setting
python run_hypergrid_exp.py --general experiments/config/general.py:3 --env experiments/config/hypergrid.py:standard --algo experiments/config/algo.py:soft_dqn --env.height 20 --env.ndim 4 --algo.tied True --algo.uniform_pb False
Molecules
The presented experiments actively reuse the existing codebase for molecule generation experiments with GFlowNets (https://github.com/GFNOrg/gflownet/tree/subtb/mols).
Additional requirements for molecule experiments:
pandas rdkit torch_geometric h5py ray hydra
(installation is available inrequirements_mols.txt
)
Path to configurations of MunchausenDQN
(utilizes hydra
library)
- General configuration:
mols/configs/soft_dqn.yaml
- Algorithm:
mols/configs/algorithm/soft_dqn.yaml
- Environment:
mols/configs/environment/block_mol.yaml
To run MunchausenDQN
with configurations prescribed above, use
python soft_dqn.py
To reporoduce baselines, run gflownet.py
with required parameters, we refer to the original repository https://github.com/GFNOrg/gflownet for additional details.
Bit sequences
Examples of running TB
, DB
and SubTB
baselines for word length k=8
:
python bitseq/run.py --objective tb --k 8 --learning_rate 0.002
python bitseq/run.py --objective db --k 8 --learning_rate 0.002
python bitseq/run.py --objective subtb --k 8 --learning_rate 0.002 --subtb_lambda 1.9
Example of running SoftDQN
:
python bitseq/run.py --objective softdqn --m_alpha 0.0 --k 8 --learning_rate 0.002 --leaf_coeff 2.0
Example of running MunchausenDQN
:
python bitseq/run.py --objective softdqn --m_alpha 0.15 --k 8 --learning_rate 0.002 --leaf_coeff 2.0
Citation
@inproceedings{tiapkin2024generative,
title={Generative flow networks as entropy-regularized rl},
author={Tiapkin, Daniil and Morozov, Nikita and Naumov, Alexey and Vetrov, Dmitry P},
booktitle={International Conference on Artificial Intelligence and Statistics},
pages={4213--4221},
year={2024},
organization={PMLR}
}