Home

Awesome

PyTorch Face Recognizer based on 'VGGFace2: A dataset for recognising faces across pose and age'.

This repo implements training and testing models, and feature extractor based on models for VGGFace2 [1].

Pretrained models for PyTorch are converted from Caffe models authors of [1] provide.

Dataset

To download VGGFace2 dataset, see authors' site.

Preprocessing images

Faces should be detected and cropped from images before face images are fed to this face recognizer(demo.py).

There are several face detection programs based on MTCNN [3].

Pretrained models

The followings are PyTorch models converted from Caffe models authors of [1] provide.

arch_typedownload link
resnet50_ftlink
senet50_ftlink
resnet50_scratchlink
senet50_scratchlink

Extracting features

Usage:

python demo.py extract <options>

Options

Testing

Usage:

python demo.py test <options>

Options

Training

Usage:

python demo.py train <options>

Options

Note

VGG-Face dataset, described in [2], is not planned to be supported in this repo. If you are interested in models for VGG-Face, see keras-vggface.

References

  1. ZQ. Cao, L. Shen, W. Xie, O. M. Parkhi, A. Zisserman, VGGFace2: A dataset for recognising faces across pose and age, 2018.
    site, arXiv

  2. Parkhi, O. M. and Vedaldi, A. and Zisserman, A., Deep Face Recognition, British Machine Vision Conference, 2015. site

  3. K. Zhang and Z. Zhang and Z. Li and Y. Qiao, Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, 2016. arXiv