Awesome
Example-Guided Style-Consistent Image Synthesis from Semantic Labeling
<p align="center"><img width="100%" src="img/fig.png" /></p>Paper
<a href="">Example-Guided Style-Consistent Image Synthesis from Semantic Labeling</a><br> Miao Wang<sup>1</sup>, Guo-Ye Yang<sup>2</sup>, Ruilong Li<sup>2</sup>, Run-Ze Liang<sup>2</sup>, Song-Hai Zhang<sup>2</sup>, Peter M. Hall<sup>3</sup> and Shi-Min Hu<sup>2,1</sup><br> <sup>1</sup>State Key Laboratory of Virtual Reality Technology and Systems, Beihang University<br> <sup>2</sup>Department of Computer Science and Technology, Tsinghua University, Beijing<br> <sup>3</sup>University of Bath<br> IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
Prerequisites
- Linux
- Python 3
- NVIDIA GPU (12G or 24G memory) + CUDA cuDNN
- pytorch==0.4.1
- numpy
- ...
Tasks
Sketch2Face
Task name: face
We use the real videos in the <a href="http://niessnerlab.org/projects/roessler2018faceforensics.html">FaceForensics</a> dataset, which contains 854 videos of reporters broadcasting news. We localize facial landmarks, crop facial regions and resize them to size 256×256. The detected facial landmarks are connected to create face sketches.
<p align="center"><img width=50%" src="img/small_face.png" /></p>Pose2Dance
Task name: pose
We download 150 solo dance videos from YouTube, crop out the central body regions and resize them to 256×256. We evenly split each video into the first part and the second part along the time-line, then sample training data only from the first parts and sample testing data only from the second parts of all the videos. The the labels are created using concatenated pre-trained DensePose and OpenPose pose detection results.
<p align="center"><img width=50%" src="img/small_dance.png" /></p>SceneParsing2StreetView
Task name: scene
We use the <a href="https://bair.berkeley.edu/blog/2018/05/30/bdd/">BDD100k</a> dataset to synthesize street view images from pixelwise semantic labels (i.e. scene parsing maps). We use the state-of-the-art scene parsing network DANet to create labels.
<p align="center"><img width=75%" src="img/small_scene.png" /></p>Getting Started
Installation
git clone [this project]
cd pix2pixSC
# download datas.zip at https://drive.google.com/drive/folders/1O94UcCXONq7p2ZiPcfi-dldjREQ-GsJK or https://share.weiyun.com/5lHBkE0
unzip datas.zip
mv datas/checkpoints ./
mv datas/datasets ./
# scripts below is optional
mkdir ../FaceForensics
download FaceForensics dataset to ../FaceForensics/datas
python process.py
python generate_data_face_forensics.py --source_path '../FaceForensics/out_data' --target_path './datasets/FaceForensics3/' --same_style_rate 0.3 --neighbor_size 10 --A_repeat_num 50 --copy_data
Training
new_scripts/train_[Task name].sh
Testing
new_scripts/test_[Task name].sh
Inference Face
Edit inference/infer_list.txt, one test case each line, outputs of each test case will be in ./results.
new_scripts/infer_face.sh
Inference code of other tasks will come later.
Results
Face
<p align="center"><img width="100%" src="img/face.png" /></p>Dance
<p align="center"><img width="100%" src="img/dance.png" /></p>Scene
<p align="center"><img width="75%" src="img/scene.png" /></p>Citation
If you find this useful for your research, please cite the following paper.
@InProceedings{pix2pixSC2019,
author = {Wang, Miao and Yang, Guo-Ye and Li, Ruilong and Liang, Run-Ze and Zhang, Song-Hai and Hall, Peter. M and Hu, Shi-Min},
title = {Example-Guided Style-Consistent Image Synthesis from Semantic Labeling},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}