Home

Awesome

PaperEdge

<a href="https://huggingface.co/spaces/SWHL/PaperEdgeDemo"><img src="https://img.shields.io/badge/%F0%9F%A4%97-Open%20in%20Spaces-blue"></a><br/> The code and the DIW dataset for "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022)

[paper] [supplementary material] image

Documents In the Wild (DIW) dataset (2.13GB)

link

Pretrained models (139.7MB each)

Enet

Tnet

DocUNet benchmark results

docunet_benchmark_paperedge.zip

The last row of adres.txt is the evaluation results. The values in the last 3 columns are AD, MS-SSIM, and LD.

Infer one image.

  1. Download the pretrained model to the models directory.
  2. Run the demo.py by the following code:
    $ python demo.py --Enet_ckpt 'models/G_w_checkpoint_13820.pt' \
                     --Tnet_ckpt 'models/L_w_checkpoint_27640.pt' \
                     --img_path 'images/1.jpg' \
                     --out_dir 'output'
    
  3. The final result: compare