Awesome
Semantic-shape Adaptive Feature Modulation for Semantic Image Synthesis
Introduction
The source code for our paper "Semantic-shape Adaptive Feature Modulation for Semantic Image Synthesis" (CVPR 2022)
Our Framework
Quick Start
Installation
git clone https://github.com/cszy98/SAFM.git
cd SAFM
pip install -r requirements.txt
cd models/counter
python setup.py install
Data Preparation
Follow the dataset preparation process in SPADE. Besides, we get the instance maps of ADE20K from instancesegmentation.
Testing and Evaluate
The pretrained models can be downloaded from GoogleDrive.
python test.py --name [experiment_name] --dataset_mode [dataset] --gpu_ids 0 --batchSize 2 --dataroot [path to dataroot] --which_epoch best --instance_root [path to instance maps]
Training
python train.py --name [experiment_name] --dataset_mode [dataset] --batchSize 4 --dataroot [path to dataroot] --instance_root [path to instance maps] --save_epoch_freq 5 --niter 100 --niter_decay 100
Acknowledgments
This code borrows heavily from SPADE.
Citation
If you find our work useful in your research or publication, please cite:
@article{lv2022semantic,
title={Semantic-shape Adaptive Feature Modulation for Semantic Image Synthesis},
author={Lv, Zhengyao and Li, Xiaoming and Niu, Zhenxing and Cao, Bing and Zuo, Wangmeng},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
year = {2022}
}
Contact
Please send email to cszy98@gmail.com