Home

Awesome

<p align="center"> <img src="assets/logo.png" width="300"> </p>

MambaIR: A Simple Baseline for Image Restoration with State-Space Model

[Paper] [Zhihu(ηŸ₯乎)]

Hang Guo*, Jinmin Li*, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia

Check our paper collection of recent Awesome Mamba work in Low-Level Vision [here] :hugs:.

(*) equal contribution

Abstract: Recent years have witnessed great progress in image restoration thanks to the advancements in modern deep neural networks e.g. Convolutional Neural Network and Transformer. However, existing restoration backbones are usually limited due to the inherent local reductive bias or quadratic computational complexity. Recently, Selective Structured State Space Model e.g., Mamba, have shown great potential for long-range dependencies modeling with linear complexity, but it is still under-explored in low-level computer vision. In this work, we introduce a simple but strong benchmark model, named MambaIR, for image restoration. In detail, we propose the Residual State Space Block as the core component, which employs convolution and channel attention to enhance capabilities of the vanilla Mamba. In this way, our MambaIR takes advantages of local patch recurrence prior as well as channel interaction to produce restoration-specific feature representation. Extensive experiments demonstrate the superiority of our method, for example, MambaIR outperforms Transformer-based baseline SwinIR by up to 0.36dB, using similar computational cost but with global receptive field.

<p align="center"> <img src="assets/pipeline.png" style="border-radius: 15px"> </p>

⭐If this work is helpful for you, please help star this repo. Thanks!πŸ€—

πŸ“‘ Contents

<a name="Real-SR"></a>πŸ” Visual Results On Real-world SR

<img src="assets/imgsli1.png" height="250"/> <img src="assets/imgsli2.png" height="250"/> <img src="assets/imgsli3.png" height="250"/>

<img src="assets/imgsli4.png" height="250"/> <img src="assets/imgsli5.png" height="250"/> <img src="assets/imgsli6.png" height="250"/>

<a name="visual_results"></a>:eyes:Visual Results On Classic Image SR

<p align="center"> <img width="800" src="assets/visual_results.png"> </p>

<a name="news"></a> πŸ†• News

<a name="todo"></a> β˜‘οΈ TODO

<a name="model_summary"></a> :page_with_curl: Model Summary

ModelTaskTest_datasetPSNRSSIMmodel_weightslog_files
MambaIR_SR2Classic SR x2Urban10034.150.9446linklink
MambaIR_SR3Classic SR x3Urban10029.930.8841linklink
MambaIR_SR4Classic SR x4Urban10027.680.8287linklink
MambaIR_light2Lightweight SR x2Urban10032.920.9356linklink
MambaIR_light3Lightweight SR x3Urban10029.000.8689linklink
MambaIR_light4Lightweight SR x4Urban10026.750.8051linklink
MambaIR_realDNReal image DenoisingSIDD39.890.960linklink
MambaIR_realSRReal-world SRRealSRSet--linklink
MambaIR_guassian15Guassian DenosingUrban10035.17-linklink
MambaIR_guassian25Guassian DenosingUrban10032.99-linklink
MambaIR_guassian50Guassian DenosingUrban10030.07-linklink
MambaIR_JEPG10JPEG CARClassic530.270.8256linklink
MambaIR_JPEG30JPEG CARClassic533.740.8965linklink
MambaIR_JPEG40JPEG CARClassic534.530.9084linklink

<a name="results"></a> πŸ₯‡ Results

We achieve state-of-the-art performance on various image restoration tasks. Detailed results can be found in the paper.

<details> <summary>Evaluation on Classic SR (click to expand)</summary> <p align="center"> <img width="500" src="assets/classicSR.png"> </p> </details> <details> <summary>Evaluation on Lightweight SR (click to expand)</summary> <p align="center"> <img width="500" src="assets/lightSR.png"> </p> </details> <details> <summary>Evaluation on Gaussian Color Image Denoising (click to expand)</summary> <p align="center"> <img width="500" src="assets/gaussian_dn.png"> </p> </details> <details> <summary>Evaluation on Real Image Denoising (click to expand)</summary> <p align="center"> <img width="500" src="assets/real-dn.png"> </p> </details> <details> <summary>Evaluation on Effective Receptive Filed (click to expand)</summary> <p align="center"> <img width="600" src="assets/erf.png"> </p> </details>

<a name="installation"></a> :wrench: Installation

This codebase was tested with the following environment configurations. It may work with other versions.

Previous installation

To use the selective scan with efficient hard-ware design, the mamba_ssm library is needed to install with the folllowing command.

pip install causal_conv1d==1.0.0
pip install mamba_ssm==1.0.1

One can also create a new anaconda environment, and then install necessary python libraries with this requirement.txt and the following command:

conda install --yes --file requirements.txt

Updated installation

One can also reproduce the conda environment with the fllowing simple commands (cuda-11.7 is used, you can modify the yaml file for your cuda version):

cd ./MambaIR
conda env create -f environment.yaml
conda activate mambair

Datasets

The datasets used in our training and testing are orgnized as follows:

TaskTraining SetTesting SetVisual Results
image SRDIV2K (800 training images) + Flickr2K (2650 images) [complete dataset DF2K download]Set5 + Set14 + BSD100 + Urban100 + Manga109 [download]Google Drive
gaussian color image denoisingDIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images) [complete dataset DFWB_RGB download]CBSD68 + Kodak24 + McMaster + Urban100 [download]Google Drive
real image denoisingSIDD (320 training images) [complete dataset SIDD download]SIDD + DND [download]Google Drive
grayscale JPEG compression artifact reductionDIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images) [complete dataset DFWB_CAR download]Classic5 + LIVE1 [download]Google Drive

<a name="training"></a> :hourglass: Training

Train on SR

  1. Please download the corresponding training datasets and put them in the folder datasets/DF2K. Download the testing datasets and put them in the folder datasets/SR.

  2. Follow the instructions below to begin training our model.

# Claissc SR task, cropped input=64Γ—64, 8 GPUs, batch size=4 per GPU
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 basicsr/train.py -opt options/train/train_MambaIR_SR_x2.yml --launcher pytorch
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 basicsr/train.py -opt options/train/train_MambaIR_SR_x3.yml --launcher pytorch
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 basicsr/train.py -opt options/train/train_MambaIR_SR_x4.yml --launcher pytorch

# Lightweight SR task, cropped input=64Γ—64, 2 GPUs, batch size=16 per GPU
python -m torch.distributed.launch --nproc_per_node=2 --master_port=1234 basicsr/train.py -opt options/train/train_MambaIR_lightSR_x2.yml --launcher pytorch
python -m torch.distributed.launch --nproc_per_node=2 --master_port=1234 basicsr/train.py -opt options/train/train_MambaIR_lightSR_x3.yml --launcher pytorch
python -m torch.distributed.launch --nproc_per_node=2 --master_port=1234 basicsr/train.py -opt options/train/train_MambaIR_lightSR_x4.yml --launcher pytorch
  1. Run the script then you can find the generated experimental logs in the folder experiments.

Train on Gaussian Color Image Denosing

  1. Download the corresponding training datasets here and put them in the folder ./datasets/DFWB_RGB. Download the testing datasets and put them in the folder ./datasets/ColorDN.

  2. Follow the instructions below to begin training:

# train on denosing15
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train/train_MambaIR_ColorDN_level15.yml --launcher pytorch

# train on denosing25
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train/train_MambaIR_ColorDN_level25.yml --launcher pytorch

# train on denosing50
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train/train_MambaIR_ColorDN_level50.yml --launcher pytorch
  1. Run the script then you can find the generated experimental logs in the folder ./experiments.

Train on JPEG Compression Artifact Reduction

  1. Download the corresponding training datasets here and put them in the folder ./datasets/DFWB_CAR. Download the testing datasets and put them in the folder ./datasets/JPEG_CAR.

  2. Follow the instructions below to begin training:

# train on jpeg10
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train/train_MambaIR_CAR_q10.yml --launcher pytorch

# train on jpeg30
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train/train_MambaIR_CAR_q30.yml --launcher pytorch

# train on jpeg40
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train/train_MambaIR_CAR_q40.yml --launcher pytorch
  1. Run the script then you can find the generated experimental logs in the folder ./experiments.

Train on Real Denoising

  1. Please download the corresponding training datasets and put them in the folder datasets/SIDD. Note that we provide both training and validating files, which are already processed.
  2. Go to folder 'realDenoising'. Follow the instructions below to train our model.
# go to the folder
cd realDenoising
# set the new environment (BasicSRv1.2.0), which is the same with Restormer for training.
python setup.py develop --no_cuda_extgf
# train for RealDN task, 8 GPUs
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train_MambaIR_RealDN.yml --launcher pytorch
Run the script then you can find the generated experimental logs in the folder realDenoising/experiments.
  1. Remember to go back to the original environment if you finish all the training or testing about real image denoising task. This is a friendly hint in order to prevent confusion in the training environment.
# Tips here. Go back to the original environment (BasicSRv1.3.5) after finishing all the training or testing about real image denoising. 
cd ..
python setup.py develop

<a name="testing"></a> :smile: Testing

Test on SR

  1. Please download the corresponding testing datasets and put them in the folder datasets/SR. Download the corresponding models and put them in the folder experiments/pretrained_models.

  2. Follow the instructions below to begin testing our MambaIR model.

# test for image SR. 
python basicsr/test.py -opt options/test/test_MambaIR_SR_x2.yml
python basicsr/test.py -opt options/test/test_MambaIR_SR_x3.yml
python basicsr/test.py -opt options/test/test_MambaIR_SR_x4.yml


# test for lightweight image SR. 
python basicsr/test.py -opt options/test/test_MambaIR_lightSR_x2.yml
python basicsr/test.py -opt options/test/test_MambaIR_lightSR_x3.yml
python basicsr/test.py -opt options/test/test_MambaIR_lightSR_x4.yml

Test on Gaussian Color Image Denoising

  1. Please download the corresponding testing datasets and put them in the folder datasets/ColorDN.

  2. Download the corresponding models and put them in the folder experiments/pretrained_models.

  3. Follow the instructions below to begin testing our model.

# test on denosing15
python basicsr/test.py -opt options/test/test_MambaIR_ColorDN_level15.yml

# test on denosing25
python basicsr/test.py -opt options/test/test_MambaIR_ColorDN_level25.yml

# test on denosing50
python basicsr/test.py -opt options/test/test_MambaIR_ColorDN_level50.yml

Test on JPEG Compression Artifact Reduction

  1. Please download the corresponding testing datasets and put them in the folder datasets/JPEG_CAR.

  2. Download the corresponding models and put them in the folder experiments/pretrained_models.

  3. Follow the instructions below to begin testing our model.

# test on jpeg10
python basicsr/test.py -opt options/test/test_MambaIR_JPEG_q10.yml

# test on jpeg30
python basicsr/test.py -opt options/test/test_MambaIR_JPEG_q30.yml

# test on jpeg40
python basicsr/test.py -opt options/test/test_MambaIR_JPEG_q40.yml

Test on Real Image Denoising

  1. Download the SIDD test and DND test. Place them in datasets/RealDN. Download the corresponding models and put them in the folder experiments/pretrained_models.

  2. Go to folder 'realDenoising'. Follow the instructions below to test our model. The output is in realDenoising/results/Real_Denoising.

    # go to the folder
    cd realDenoising
    # set the new environment (BasicSRv1.2.0), which is the same with Restormer for testing.
    python setup.py develop --no_cuda_ext
    # test MambaIR (training total iterations = 300K) on SSID
    python test_real_denoising_sidd.py
    # test MambaIR (training total iterations = 300K) on DND
    python test_real_denoising_dnd.py
    
  3. Run the scripts below to reproduce PSNR/SSIM on SIDD.

    run evaluate_sidd.m
    
  4. For PSNR/SSIM scores on DND, you can upload the genetated DND mat files to the online server and get the results.

  5. Remerber to go back to the original environment if you finish all the training or testing about real image denoising task. This is a friendly hint in order to prevent confusion in the training environment.

    # Tips here. Go back to the original environment (BasicSRv1.3.5) after finishing all the training or testing about real image denoising. 
    cd ..
    python setup.py develop
    

<a name="cite"></a> πŸ₯° Citation

Please cite us if our work is useful for your research.

@inproceedings{guo2024mambair,
    title={MambaIR: A Simple Baseline for Image Restoration with State-Space Model},
    author={Guo, Hang and Li, Jinmin and Dai, Tao and Ouyang, Zhihao and Ren, Xudong and Xia, Shu-Tao},
    booktitle={ECCV},
    year={2024}
}

License

This project is released under the Apache 2.0 license.

Acknowledgement

This code is based on BasicSR, ART ,and VMamba. Thanks for their awesome work.

Contact

If you have any questions, feel free to approach me at cshguo@gmail.com