Awesome
You Only Look at Screens: Multimodal Chain-of-Action Agents
"In every systematic inquiry (methodos) where there are first principles, or causes, or elements, knowledge and science result from acquiring knowledge of these; for we think we know something just in case we acquire knowledge of the primary causes, the primary first principles, all the way to the elements."
<p align="right">-- Aristotle (384 BC - 322 BC)</p>Auto-UI is a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. To improve the agent's action prediction capability, we propose a novel chain-of-action technique, where a chain of action is a series of intermediate previous action histories and future action plans that lead to action prediction.
Requirements
Install all required python dependencies:
pip install -r requirements.txt
Datasets
Download the processed dataset from the following repository: https://huggingface.co/cooelf/Auto-UI/tree/main.
Extract Features (optional)
The following script will download and processed the AITW dataset.
CUDA_VISIBLE_DEVICES=0 python fetch_features.py --dataset general --split_file dataset/general_texts_splits.json --output_dir dataset/blip/general_blip
CUDA_VISIBLE_DEVICES=1 python fetch_features.py --dataset install --split_file dataset/install_texts_splits.json --output_dir dataset/blip/install_blip
CUDA_VISIBLE_DEVICES=2 python fetch_features.py --dataset google_apps --split_file dataset/google_apps_texts_splits.json --output_dir dataset/blip/google_apps_blip
CUDA_VISIBLE_DEVICES=3 python fetch_features.py --dataset single --split_file dataset/single_texts_splits.json --output_dir dataset/blip/single_blip
CUDA_VISIBLE_DEVICES=4 python fetch_features.py --dataset web_shopping --split_file dataset/web_shopping_texts_splits.json --output_dir dataset/blip/web_shopping_blip
The structure of the dataset folder should be:
dataset
├── general_texts_splits.json
├── install_texts_splits.json
├── google_apps_texts_splits.json
├── single_texts_splits.json
├── web_shopping_texts_splits.json
├── blip
│ └── general_blip_train.obj
│ └── general_blip_val.obj
│ └── general_blip_test.obj
│ └── ...
Instructions
Training
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \
--data_root blip \
--model declare-lab/flan-alpaca-base \
--epoch 10 --lr 1e-4 \
--user_msg seq_future_blip_axis_all0.1_hist8_future4 --img_type blip --img_dim 1408 \
--bs 4 --eval_bs 16 --input_len 512 --output_len 128 --eval_acc 40 \
--transform_axis --warmup_ratio 0.05 \
--all_data 0.1 \
--use_history 8 \
--use_future 4 \
--eval_subset dataset/blip/general_blip \
--output_dir experiments
Inference
Our trained models are available at https://huggingface.co/cooelf/Auto-UI/tree/main.
CUDA_VISIBLE_DEVICES=0,1 python main.py \
--data_root dataset/blip/general_blip \
--model declare-lab/flan-alpaca-base \
--epoch 10 --lr 1e-4 \
--user_msg seq_future_blip_axis_all0.1_hist8_future4 --img_type blip --img_dim 1408 \
--bs 4 --eval_bs 16 --input_len 512 --output_len 128 --eval_acc 40 \
--transform_axis --warmup_ratio 0.05 \
--use_history 8 \
--use_future 4 \
--eval_name general \
--evaluate_dir Auto-UI-Base
Citing Auto-UI
@article{zhan2023autoui,
title={You Only Look at Screens: Multimodal Chain-of-Action Agents},
author={Zhan, Zhuosheng and Zhang, Aston},
journal={arXiv preprint arXiv:2309.11436},
year={2023}
}
License
This project is licensed under the Apache-2.0 License.