Awesome
rio-tiler-mvt
<p align="center"> <img src="https://user-images.githubusercontent.com/10407788/57476379-72cf6000-7264-11e9-979d-bf9f486518c2.png" style="max-width: 800px;" alt="rio-tiler"></a> </p> <p align="center"> <em>A rio-tiler plugin to translate tile array to MVT (using python-vtzero).</em> </p> <p align="center"> <a href="https://github.com/cogeotiff/rio-tiler-mvt/actions?query=workflow%3ACI" target="_blank"> <img src="https://github.com/cogeotiff/rio-tiler-mvt/workflows/CI/badge.svg" alt="Test"> </a> <a href="https://codecov.io/gh/cogeotiff/rio-tiler-mvt" target="_blank"> <img src="https://codecov.io/gh/cogeotiff/rio-tiler-mvt/branch/master/graph/badge.svg" alt="Coverage"> </a> <a href="https://pypi.org/project/rio-tiler-mvt" target="_blank"> <img src="https://img.shields.io/pypi/v/rio-tiler-mvt?color=%2334D058&label=pypi%20package" alt="Package version"> </a> <a href="https://github.com/cogeotiff/rio-tiler-mvt/blob/master/LICENSE" target="_blank"> <img src="https://img.shields.io/github/license/cogeotiff/rio-tiler-mvt.svg" alt="Downloads"> </a> </p>More on COG Talk blog posts
Install
Requirements
rio-tiler-mvt use python-vtzero wrapper to encode point and polygons to MVT. Because VTZERO is a C++ library, python-vtzero is written in Cython, thus cython is required to compile this library.
$ pip install cython # see https://github.com/tilery/python-vtzero#requirements
$ pip install rio-tiler-mvt
Or
$ git clone http://github.com/cogeotiff/rio-tiler-mvt
$ cd rio-tiler-mvt
$ pip install -e .
Rio-tiler + Mapbox Vector tiles
API
pixel_encoder
pixels_encoder(
data: numpy.ndarray,
mask: numpy.ndarray,
band_names: list = [],
layer_name: str = "my_layer",
feature_type: str = "point"
)
Inputs:
- data: raster tile data to encode
- mask: mask data
- band_names: Raster band's names
- layer_name: Layer name
- feature_type: Feature type (point or polygon)
Returns:
- mvt : Mapbox Vector Tile encoded data.
Examples:
from rio_tiler.io import COGReader
from rio_tiler_mvt import pixels_encoder
with COGReader("fixtures/test.tif") as cog
img = cog.tile(72, 63, 7, resampling_method="nearest")
mvt = pixels_encoder(img.data, img.mask, layer_name="test", feature_type="point")
shapes_encoder
shapes_encoder(
data: numpy.ndarray, # 1D array (height, width)
mask: numpy.ndarray,
layer_name: str = "my_layer",
colormap: dict = {},
class_names: dict = {}
)
Inputs:
- data: raster tile data to encode
- mask: mask data
- layer_name: Layer name
- colormap: GDAL colormap. If provided a
color
value will be added to the feature properties - class_names: Dictionary mapping pixel value with class names. If provided a
name
value will be added to the feature properties.
Returns:
- mvt : Mapbox Vector Tile encoded data.
Contribution & Development
Issues and pull requests are more than welcome.
dev install
$ git clone https://github.com/cogeotiff/rio-tiler-mvt.git
$ cd rio-tiler-mvt
$ pip install -e .[dev]
pre-commit
This repo is set to use pre-commit
to run isort, flake8, pydocstring, black ("uncompromising Python code formatter") and mypy when committing new code.
$ pre-commit install
Links
- satellite-3d: http://github.com/developmentseed/satellite-3d.git
- titiler-mvt: http://github.com/developmentseed/titiler-mvt.git
- rio-viz: http://github.com/developmentseed/rio-viz.git