Home

Awesome

insurance_qa_python

About

Insurance QA data formatted as Python objects and pickled.

Example usage

Clone locally

git clone https://github.com/codekansas/insurance_qa_python.git
cd insurance_qa_python
pwd # where files are stored

Getting QA format with the files

import pickle

def get_pickle(filename):
	return pickle.load(open(filename, 'rb'))

vocab = get_pickle('vocabulary')

def translate_sent(sent):
	return [vocab[word] for word in sent]

dev = get_pickle('dev')
answers = get_pickle('answers')

def get_answer(answer_id):
	return translate_sent(answers[answer_id])

for data_item in dev:
	for bad_answer in data_item['bad']:
		print('Question:', translate_sent(data_item['question']))
		print('Good Answer:', get_answer(data_item['good'][0]))
		print('Bad Answer: ', get_answer(bad_answer), '\n============')

About files:

Resources

Cite

Applying Deep Learning to Answer Selection: A Study and An Open Task
Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, Bowen Zhou ASRU 2015