Home

Awesome

Knowledge Graph Completion

This repository holds the code and datasets for experiments in the two papers (Please, cite these publication if you use our source codes and datasets):

[1 - ContE Model] Changsung Moon, Steve Harenberg, John Slankas, and Nagiza F. Samatova. ”Learning Contextual Embeddings for Knowledge Graph Completion." In the Pacific Asia Conference on Information Systems (PACIS). 2017.

[2 - ETE Model] Changsung Moon, Paul Jones, and Nagiza F. Samatova. ” Learning Entity Type Embeddings for Knowledge Graph Completion." In the ACM International Conference on Information and Knowledge Management (CIKM). 2017.

There are three kinds of inference of missing data in a knowledge graph: 1) missing entity, 2) missing relation type and 3) missing entity type

Author: Changsung Moon (cmoon2@ncsu.edu)

Dependency Requirements: Python==2.7

The source codes are modified versions from original source code from https://github.com/mnick/holographic-embeddings

Usage instructions:

  1. Parameter Setup
  1. Inference of missing entity (ContE model)
  1. Inference of missing relation type (ContE model)
  1. Inference of missing entity type (ETE model)