Home

Awesome

(NOTICE) All the ReXNet-lite's model files have been updated!

(NOTICE) Our paper has been accepted at CVPR 2021!! The paper has been updated at arxiv!

Rethinking Channel Dimensions for Efficient Model Design

Dongyoon Han, Sangdoo Yun, Byeongho Heo, and YoungJoon Yoo | Paper | Pretrained Models

NAVER AI Lab

Abstract

Designing an efficient model within the limited computational cost is challenging. We argue the accuracy of a lightweight model has been further limited by the design convention: a stage-wise configuration of the channel dimensions, which looks like a piecewise linear function of the network stage. In this paper, we study an effective channel dimension configuration towards better performance than the convention. To this end, we empirically study how to design a single layer properly by analyzing the rank of the output feature. We then investigate the channel configuration of a model by searching network architectures concerning the channel configuration under the computational cost restriction. Based on the investigation, we propose a simple yet effective channel configuration that can be parameterized by the layer index. As a result, our proposed model following the channel parameterization achieves remarkable performance on ImageNet classification and transfer learning tasks including COCO object detection, COCO instance segmentation, and fine-grained classifications.

Model performance

<img src=https://user-images.githubusercontent.com/31481676/113254746-f0416500-9301-11eb-9cd8-f188037cc82c.png width=2000 hspace=20>

Performance comparison

ReXNets vs EfficientNets

ReXNet-lites vs. EfficientNet-lites

ImageNet-1k Pretrained models

<h2 id="pretrained"> ImageNet classification results</h2>

Finetuning results

COCO Object detection

COCO instance segmentation

Getting Started

Requirements

Using the pretrained models

Training own ReXNet

ReXNet can be trained with any PyTorch training codes including ImageNet training in PyTorch with the model file and proper arguments. Since the provided model file is not complicated, we simply convert the model to train a ReXNet in other frameworks like MXNet. For MXNet, we recommend MXnet-gluoncv as a training code.

Using PyTorch, we trained ReXNets with one of the popular imagenet classification code, Ross Wightman's pytorch-image-models for more efficient training. After including ReXNet's model file into the training code, one can train ReXNet-1.0x with the following command line:

./distributed_train.sh 4 /imagenet/ --model rexnetv1 --rex-width-mult 1.0 --opt sgd --amp \
 --lr 0.5 --weight-decay 1e-5 \
 --batch-size 128 --epochs 400 --sched cosine \
 --remode pixel --reprob 0.2 --drop 0.2 --aa rand-m9-mstd0.5 
 

Using droppath or MixUP may need to train a bigger model.

License

This project is distributed under MIT license.

How to cite

@misc{han2021rethinking,
      title={Rethinking Channel Dimensions for Efficient Model Design}, 
      author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
      year={2021},
      eprint={2007.00992},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}