Home

Awesome

FFG-benchmarks

This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

What is Few-shot Font Generation (FFG)?

Few-shot font generation tasks aim to generate a new font library using only a few reference glyphs, e.g., less than 10 glyph images, without additional model fine-tuning at the test time [ref].

In this repository, we do not consider methods fine-tuning on the unseen style fonts.

Sub-documents

docs
├── Dataset.md
├── FTransGAN-Dataset.md
├── Inference.md
├── Evaluator.md
└── models
    ├── DM-Font.md
    ├── FUNIT.md
    ├── LF-Font.md
    └── MX-Font.md

Available models

Not available here, but you may also consider

Model overview

ModelProvided in this repo?Chinese generation?Need component labels?
EMD (CVPR'18)XOX
FUNIT (ICCV'19)OOX
AGIS-Net (SIGGRAPH Asia'19)XOX
DM-Font (ECCV'20)OXO
LF-Font (AAAI'21)OOO
FTransGAN (WACV'21)XOX
MX-Font (ICCV'21)OOOnly for training

Preparing Environments

Requirements

Our code is tested on Python >= 3.6 (we recommend conda) with the following libraries

torch >= 1.5
sconf
numpy
scipy
scikit-image
tqdm
jsonlib-python3
fonttools

Datasets

Korean / Chinese / ...

The full description is in docs/Dataset.md

We allow two formats for datasets:

You can collect your own fonts from the following web sites (for non-commercial purpose):

Note that fonts are protected intellectual property and it is unable to release the collected font datasets unless license is cleaned-up. Many font generation papers do not publicly release their own datasets due to this license issue. We also face the same issue here. Therefore, we encourage the users to collect their own datasets from the web, or using the publicly avaiable datasets.

FTransGAN (Li, Chenhao, et al. WACV 2021) [pdf] [github] released the rendered image files for training and evaluating FFG models. We also make our repository able to use the font dataset provided by FTransGAN. More details can be found in docs/FTransGAN-Dataset.md.

Training

We separately provide model documents in docs/models as follows

Generation

Preparing reference images

Detailed instruction for preparing reference images is decribed in here.

Run test

Please refer following documents to train the model:

Evaluation

Detailed instructions for preparing evaluator and testing the generated images are decribed in here.

License

This project is distributed under MIT license, except FUNIT and base/modules/modules.py which is adopted from https://github.com/NVlabs/FUNIT.

FFG-benchmarks
Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.