Home

Awesome

<div align="center">

Donut šŸ© : Document Understanding Transformer

Paper Conference Demo Demo PyPI Downloads

Official Implementation of Donut and SynthDoG | Paper | Slide | Poster

</div>

Introduction

Donut šŸ©, Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model. Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing). In addition, we present SynthDoG šŸ¶, Synthetic Document Generator, that helps the model pre-training to be flexible on various languages and domains.

Our academic paper, which describes our method in detail and provides full experimental results and analyses, can be found here:<br>

OCR-free Document Understanding Transformer.<br> Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. In ECCV 2022.

<img width="946" alt="image" src="misc/overview.png">

Pre-trained Models and Web Demos

Gradio web demos are available! Demo Demo
image
TaskSec/ImgScoreTrained Model<div id="demo">Demo</div>
CORD (Document Parsing)0.7 /<br> 0.7 /<br> 1.291.3 /<br> 91.1 /<br> 90.9donut-base-finetuned-cord-v2 (1280) /<br> donut-base-finetuned-cord-v1 (1280) /<br> donut-base-finetuned-cord-v1-2560gradio space web demo,<br>google colab demo (updated at 23.06.15)
Train Ticket (Document Parsing)0.698.7donut-base-finetuned-zhtrainticketgoogle colab demo (updated at 23.06.15)
RVL-CDIP (Document Classification)0.7595.3donut-base-finetuned-rvlcdipgradio space web demo,<br>google colab demo (updated at 23.06.15)
DocVQA Task1 (Document VQA)0.7867.5donut-base-finetuned-docvqagradio space web demo,<br>google colab demo (updated at 23.06.15)

The links to the pre-trained backbones are here:

Please see our paper for more details.

SynthDoG datasets

image

The links to the SynthDoG-generated datasets are here:

To generate synthetic datasets with our SynthDoG, please see ./synthdog/README.md and our paper for details.

Updates

2023-06-15 We have updated all Google Colab demos to ensure its proper working.<br> 2022-11-14 New version 1.0.9 is released (pip install donut-python --upgrade). See 1.0.9 Release Notes.<br> 2022-08-12 Donut šŸ© is also available at huggingface/transformers šŸ¤— (contributed by @NielsRogge). donut-python loads the pre-trained weights from the official branch of the model repositories. See 1.0.5 Release Notes.<br> 2022-08-05 A well-executed hands-on tutorial on donut šŸ© is published at Towards Data Science (written by @estaudere).<br> 2022-07-20 First Commit, We release our code, model weights, synthetic data and generator.

Software installation

PyPI Downloads

pip install donut-python

or clone this repository and install the dependencies:

git clone https://github.com/clovaai/donut.git
cd donut/
conda create -n donut_official python=3.7
conda activate donut_official
pip install .

We tested donut-python == 1.0.1 with:

Note: From several reported issues, we have noticed increased challenges in configuring the testing environment for donut-python due to recent updates in key dependency libraries. While we are actively working on a solution, we have updated the Google Colab demo (as of June 15, 2023) to ensure its proper working. For assistance, we encourage you to refer to the following demo links: CORD Colab Demo, Train Ticket Colab Demo, RVL-CDIP Colab Demo, DocVQA Colab Demo.

Getting Started

Data

This repository assumes the following structure of dataset:

> tree dataset_name
dataset_name
ā”œā”€ā”€ test
ā”‚   ā”œā”€ā”€ metadata.jsonl
ā”‚   ā”œā”€ā”€ {image_path0}
ā”‚   ā”œā”€ā”€ {image_path1}
ā”‚             .
ā”‚             .
ā”œā”€ā”€ train
ā”‚   ā”œā”€ā”€ metadata.jsonl
ā”‚   ā”œā”€ā”€ {image_path0}
ā”‚   ā”œā”€ā”€ {image_path1}
ā”‚             .
ā”‚             .
ā””ā”€ā”€ validation
    ā”œā”€ā”€ metadata.jsonl
    ā”œā”€ā”€ {image_path0}
    ā”œā”€ā”€ {image_path1}
              .
              .

> cat dataset_name/test/metadata.jsonl
{"file_name": {image_path0}, "ground_truth": "{\"gt_parse\": {ground_truth_parse}, ... {other_metadata_not_used} ... }"}
{"file_name": {image_path1}, "ground_truth": "{\"gt_parse\": {ground_truth_parse}, ... {other_metadata_not_used} ... }"}
     .
     .

For Document Classification

The gt_parse follows the format of {"class" : {class_name}}, for example, {"class" : "scientific_report"} or {"class" : "presentation"}.

For Document Information Extraction

The gt_parse is a JSON object that contains full information of the document image, for example, the JSON object for a receipt may look like {"menu" : [{"nm": "ICE BLACKCOFFEE", "cnt": "2", ...}, ...], ...}.

For Document Visual Question Answering

The gt_parses follows the format of [{"question" : {question_sentence}, "answer" : {answer_candidate_1}}, {"question" : {question_sentence}, "answer" : {answer_candidate_2}}, ...], for example, [{"question" : "what is the model name?", "answer" : "donut"}, {"question" : "what is the model name?", "answer" : "document understanding transformer"}].

For (Pseudo) Text Reading Task

The gt_parse looks like {"text_sequence" : "word1 word2 word3 ... "}

Training

This is the configuration of Donut model training on CORD dataset used in our experiment. We ran this with a single NVIDIA A100 GPU.

python train.py --config config/train_cord.yaml \
                --pretrained_model_name_or_path "naver-clova-ix/donut-base" \
                --dataset_name_or_paths '["naver-clova-ix/cord-v2"]' \
                --exp_version "test_experiment"    
  .
  .                                                                                                                                                                                                                                         
Prediction: <s_menu><s_nm>Lemon Tea (L)</s_nm><s_cnt>1</s_cnt><s_price>25.000</s_price></s_menu><s_total><s_total_price>25.000</s_total_price><s_cashprice>30.000</s_cashprice><s_changeprice>5.000</s_changeprice></s_total>
Answer: <s_menu><s_nm>Lemon Tea (L)</s_nm><s_cnt>1</s_cnt><s_price>25.000</s_price></s_menu><s_total><s_total_price>25.000</s_total_price><s_cashprice>30.000</s_cashprice><s_changeprice>5.000</s_changeprice></s_total>
Normed ED: 0.0
Prediction: <s_menu><s_nm>Hulk Topper Package</s_nm><s_cnt>1</s_cnt><s_price>100.000</s_price></s_menu><s_total><s_total_price>100.000</s_total_price><s_cashprice>100.000</s_cashprice><s_changeprice>0</s_changeprice></s_total>
Answer: <s_menu><s_nm>Hulk Topper Package</s_nm><s_cnt>1</s_cnt><s_price>100.000</s_price></s_menu><s_total><s_total_price>100.000</s_total_price><s_cashprice>100.000</s_cashprice><s_changeprice>0</s_changeprice></s_total>
Normed ED: 0.0
Prediction: <s_menu><s_nm>Giant Squid</s_nm><s_cnt>x 1</s_cnt><s_price>Rp. 39.000</s_price><s_sub><s_nm>C.Finishing - Cut</s_nm><s_price>Rp. 0</s_price><sep/><s_nm>B.Spicy Level - Extreme Hot Rp. 0</s_price></s_sub><sep/><s_nm>A.Flavour - Salt & Pepper</s_nm><s_price>Rp. 0</s_price></s_sub></s_menu><s_sub_total><s_subtotal_price>Rp. 39.000</s_subtotal_price></s_sub_total><s_total><s_total_price>Rp. 39.000</s_total_price><s_cashprice>Rp. 50.000</s_cashprice><s_changeprice>Rp. 11.000</s_changeprice></s_total>
Answer: <s_menu><s_nm>Giant Squid</s_nm><s_cnt>x1</s_cnt><s_price>Rp. 39.000</s_price><s_sub><s_nm>C.Finishing - Cut</s_nm><s_price>Rp. 0</s_price><sep/><s_nm>B.Spicy Level - Extreme Hot</s_nm><s_price>Rp. 0</s_price><sep/><s_nm>A.Flavour- Salt & Pepper</s_nm><s_price>Rp. 0</s_price></s_sub></s_menu><s_sub_total><s_subtotal_price>Rp. 39.000</s_subtotal_price></s_sub_total><s_total><s_total_price>Rp. 39.000</s_total_price><s_cashprice>Rp. 50.000</s_cashprice><s_changeprice>Rp. 11.000</s_changeprice></s_total>
Normed ED: 0.039603960396039604                                                                                                                                  
Epoch 29: 100%|ā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆ| 200/200 [01:49<00:00,  1.82it/s, loss=0.00327, exp_name=train_cord, exp_version=test_experiment]

Some important arguments:

Test

With the trained model, test images and ground truth parses, you can get inference results and accuracy scores.

python test.py --dataset_name_or_path naver-clova-ix/cord-v2 --pretrained_model_name_or_path ./result/train_cord/test_experiment --save_path ./result/output.json
100%|ā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆā–ˆ| 100/100 [00:35<00:00,  2.80it/s]
Total number of samples: 100, Tree Edit Distance (TED) based accuracy score: 0.9129639764131697, F1 accuracy score: 0.8406020841373987

Some important arguments:

How to Cite

If you find this work useful to you, please cite:

@inproceedings{kim2022donut,
  title     = {OCR-Free Document Understanding Transformer},
  author    = {Kim, Geewook and Hong, Teakgyu and Yim, Moonbin and Nam, JeongYeon and Park, Jinyoung and Yim, Jinyeong and Hwang, Wonseok and Yun, Sangdoo and Han, Dongyoon and Park, Seunghyun},
  booktitle = {European Conference on Computer Vision (ECCV)},
  year      = {2022}
}

License

MIT license

Copyright (c) 2022-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.