Home

Awesome

Cloud Posse

load-testing

A collection of best practices, workflows, scripts and scenarios that Cloud Posse uses for load and performance testing of websites and applications (in particular those deployed on Kubernetes clusters).

NOTE: All load testing scenarios in scenarios are just examples and are provided here for reference. Consider updating them to reflect your environment.

Introduction

For load and performance testing, the workflow consists of these main steps:

  1. Select and configure load testing tools
  2. Implement load testing scenarios and scripts
  3. Perform load testing and analyze the results
  4. Suggest improvements and tuning procedures for the infrastructure and application under test

Select and configure load testing tools

We use k6 from Load Impact for the following reasons:

Read more about k6's features and metrics:

Installation

The docker-compose file builds three Docker images:

Run docker-compose up to build the containers and run InfluxDB and Grafana in the background

docker-compose up -d influxdb grafana

Open http://localhost:3000 to see Grafana running.

By default, Grafana does not come with any pre-configured dashboards.

We will install this dashboard to visualize k6 metrics https://grafana.com/dashboards/2587

Go to +/Import menu and paste https://grafana.com/dashboards/2587 URL into the Grafana.com Dashboard field, then click Load button. Then select myinfluxdb from the Select a InfluxDB data source dropdown and click Import.

Import Grafana Dashboard

Implement load testing scenarios and scripts

To establish a baseline, first we'll load test the website's home page with one concurrent user.

This will allow us to see the best performing numbers, against which we'd compare more advanced scenarios involving more pages and more concurrent users.

(see scenario_01)

import http from "k6/http";
import {check} from "k6";
import {config} from "./utils.js";

export function setup() {
}

export function teardown(data) {
}

export default function (data) {
    let res = http.get(config.baseUrl);
    check(res, {"status is 200": (r) => r.status === 200});
}

Run the test

docker-compose run -v $PWD/scenarios:/scenarios k6 run --vus 1 /scenarios/scenario_01.js
execution: local
     output: influxdb=http://influxdb:8086/k6 (http://influxdb:8086)
     script: /scenarios/scenario_01.js

    duration: -,  iterations: 1
         vus: 1, max: 1

    done [==========================================================] 1 / 1

    ✓ status is 200

    checks.....................: 100.00% ✓ 1   ✗ 0
    data_received..............: 21 kB   29 kB/s
    data_sent..................: 628 B   864 B/s
    http_req_blocked...........: avg=507.78ms min=507.78ms med=507.78ms max=507.78ms p(90)=507.78ms p(95)=507.78ms
    http_req_connecting........: avg=101.94ms min=101.94ms med=101.94ms max=101.94ms p(90)=101.94ms p(95)=101.94ms
    http_req_duration..........: avg=218.25ms min=218.25ms med=218.25ms max=218.25ms p(90)=218.25ms p(95)=218.25ms
    http_req_receiving.........: avg=98.58ms  min=98.58ms  med=98.58ms  max=98.58ms  p(90)=98.58ms  p(95)=98.58ms
    http_req_sending...........: avg=311.79µs min=311.79µs med=311.79µs max=311.79µs p(90)=311.79µs p(95)=311.79µs
    http_req_tls_handshaking...: avg=233.84ms min=233.84ms med=233.84ms max=233.84ms p(90)=233.84ms p(95)=233.84ms
    http_req_waiting...........: avg=119.36ms min=119.36ms med=119.36ms max=119.36ms p(90)=119.36ms p(95)=119.36ms
    http_reqs..................: 1       1.377151/s
    iteration_duration.........: avg=726.16ms min=726.16ms med=726.16ms max=726.16ms p(90)=726.16ms p(95)=726.16ms
    iterations.................: 1       1.377151/s
    vus........................: 1       min=1 max=1
    vus_max....................: 1       min=1 max=1

Open the Grafana dashboard at http://localhost:3000 to see the load test results

Load Scenario 01 Grafana Dashboard

We assume that we want the website to handle 50 concurrent users.

Let's hit the home page with 50 concurrent users, each doing one iteration

docker-compose run -v $PWD/scenarios:/scenarios k6 run --vus 50 -i 50 /scenarios/scenario_01.js
execution: local
     output: influxdb=http://influxdb:8086/k6 (http://influxdb:8086)
     script: /scenarios/scenario_01.js

    duration: -,   iterations: 50
         vus: 50, max: 50

    done [==========================================================] 50 / 50

    ✓ status is 200

    checks.....................: 100.00% ✓ 50   ✗ 0
    data_received..............: 1.1 MB  900 kB/s
    data_sent..................: 32 kB   26 kB/s
    http_req_blocked...........: avg=508.53ms min=367.91ms med=514.28ms max=626.1ms  p(90)=535.23ms p(95)=580.65ms
    http_req_connecting........: avg=118.73ms min=107.93ms med=116.3ms  max=128.63ms p(90)=127.72ms p(95)=128.27ms
    http_req_duration..........: avg=352.61ms min=242.46ms med=289.54ms max=693.7ms  p(90)=586.94ms p(95)=677.55ms
    http_req_receiving.........: avg=142.61ms min=106.13ms med=112.35ms max=325.64ms p(90)=221.21ms p(95)=243.53ms
    http_req_sending...........: avg=302.04µs min=96µs     med=216.3µs  max=1.47ms   p(90)=450.41µs p(95)=722.01µs
    http_req_tls_handshaking...: avg=384.43ms min=255.68ms med=392.95ms max=490.64ms p(90)=400.86ms p(95)=445.49ms
    http_req_waiting...........: avg=209.7ms  min=121.49ms med=178.65ms max=465.43ms p(90)=372.73ms p(95)=449.88ms
    http_reqs..................: 50      41.106944/s
    iteration_duration.........: avg=861.49ms min=613.3ms  med=821.16ms max=1.21s    p(90)=1.1s     p(95)=1.19s
    iterations.................: 50      41.106944/s
    vus........................: 50      min=50 max=50
    vus_max....................: 50      min=50 max=50

We just loaded the website with 41.106944 requests per second.

Let's increase the number of iterations to hit the home page with approximately 50 requests per second.

docker-compose run -v $PWD/scenarios:/scenarios k6 run --vus 50 -i 80 /scenarios/scenario_01.js
execution: local
     output: influxdb=http://influxdb:8086/k6 (http://influxdb:8086)
     script: /scenarios/scenario_01.js

    duration: -,   iterations: 80
         vus: 50, max: 50

    done [==========================================================] 80 / 80

    ✓ status is 200

    checks.....................: 100.00% ✓ 80   ✗ 0
    data_received..............: 1.6 MB  1.0 MB/s
    data_sent..................: 36 kB   23 kB/s
    http_req_blocked...........: avg=417.72ms min=0s       med=654.48ms max=773.72ms p(90)=752.66ms p(95)=755.02ms
    http_req_connecting........: avg=72.56ms  min=0s       med=109.63ms max=126.36ms p(90)=124.42ms p(95)=125.01ms
    http_req_duration..........: avg=365.54ms min=124.6ms  med=300.31ms max=798.99ms p(90)=675.51ms p(95)=767.64ms
    http_req_receiving.........: avg=189.48ms min=383.2µs  med=116.58ms max=572.32ms p(90)=357.2ms  p(95)=553.45ms
    http_req_sending...........: avg=171.3µs  min=56.4µs   med=156.7µs  max=557.4µs  p(90)=303.64µs p(95)=366.13µs
    http_req_tls_handshaking...: avg=220.24ms min=0s       med=344.77ms max=446.4ms  p(90)=427.9ms  p(95)=429.37ms
    http_req_waiting...........: avg=175.89ms min=121.14ms med=148.49ms max=478.35ms p(90)=238.48ms p(95)=265.03ms
    http_reqs..................: 80      50.821139/s
    iteration_duration.........: avg=783.68ms min=124.91ms med=972.43ms max=1.55s    p(90)=1.23s    p(95)=1.36s
    iterations.................: 80      50.821139/s
    vus........................: 50      min=50 max=50
    vus_max....................: 50      min=50 max=50

Check the Kubernetes pods CPU and memory consumption in the Kubernetes Grafana dashboard

Load Scenario 01 Grafana Portal Dashboard

We can conclude that with the current CPU and memory configurations for Kubernetes pods, the site can handle 50 requests per second to the home page.

Perform load testing and analyze the results

k6 has a built-in HAR converter that will read HAR files and convert them to k6 scripts that can then be executed.

See session recording for more details.

We recorded and prepared a sample scenario to test the complete user flow on a website, including signing up, creating a user profile, providing all required information, and finally getting a list of available options for the user (see scenario_all).

Run it with a single user

docker-compose run -v $PWD/scenarios:/scenarios k6 run --vus 1 -i 1 /scenarios/scenario_all.js
execution: local
     output: influxdb=http://influxdb:8086/k6 (http://influxdb:8086)
     script: /scenarios/scenario_all.js

    duration: -,  iterations: 1
         vus: 1, max: 1

    done [==========================================================] 1 / 1

    █ page_01 - home

    █ page_02 - /profile

    █ page_03 - /save_profile

    █ page_04 - /add_categories

    █ page_05 - /add_features

    █ page_06 - /add_details

    █ page_07 - /add_details2

    █ page_08 - /users

    █ page_09 - /enrollment

    █ page_10 - /enrollment2

    █ page_11 - /update_profile

    data_received..............: 14 MB  630 kB/s
    data_sent..................: 234 kB 11 kB/s
    group_duration.............: avg=1.96s    min=106.14ms med=1.75s    max=4.91s    p(90)=3.76s    p(95)=4.34s
    http_req_blocked...........: avg=33.98ms  min=0s       med=0s       max=443.45ms p(90)=0s       p(95)=441.04ms
    http_req_connecting........: avg=7.36ms   min=0s       med=0s       max=96.85ms  p(90)=0s       p(95)=95.41ms
    http_req_duration..........: avg=227.61ms min=95.64ms  med=148.8ms  max=1.27s    p(90)=464.57ms p(95)=806.93ms
    http_req_receiving.........: avg=34.44ms  min=76.3µs   med=1.12ms   max=1.11s    p(90)=102.9ms  p(95)=117.98ms
    http_req_sending...........: avg=224.35µs min=83.5µs   med=178.1µs  max=1.45ms   p(90)=346.46µs p(95)=545.93µs
    http_req_tls_handshaking...: avg=17.26ms  min=0s       med=0s       max=225.33ms p(90)=0s       p(95)=224.26ms
    http_req_waiting...........: avg=192.94ms min=95.41ms  med=105.15ms max=998.45ms p(90)=374.83ms p(95)=652.32ms
    http_reqs..................: 130    6.027408/s
    iteration_duration.........: avg=21.56s   min=21.56s   med=21.56s   max=21.56s   p(90)=21.56s   p(95)=21.56s
    iterations.................: 1      0.046365/s
    vus........................: 1      min=1 max=1
    vus_max....................: 1      min=1 max=1

The entire process took 21 seconds.

Now run it with 50 concurrent users

docker-compose run -v $PWD/scenarios:/scenarios k6 run --vus 50 -i 50 /scenarios/scenario_all.js
execution: local
     output: influxdb=http://influxdb:8086/k6 (http://influxdb:8086)
     script: /scenarios/scenario_all.js

    duration: -,   iterations: 50
         vus: 50, max: 50

    done [==========================================================] 50 / 50

    █ page_01 - home

    █ page_02 - /profile

    █ page_03 - /save_profile

    █ page_04 - /add_categories

    █ page_05 - /add_features

    █ page_06 - /add_details

    █ page_07 - /add_details2

    █ page_08 - /users

    █ page_09 - /enrollment

    █ page_10 - /enrollment2

    █ page_11 - /update_profile

    data_received..............: 679 MB 6.6 MB/s
    data_sent..................: 12 MB  115 kB/s
    group_duration.............: avg=5.78s    min=104.4ms    med=3.02s    max=1m6s     p(90)=10.88s   p(95)=13.51s
    http_req_blocked...........: avg=230.04ms min=0s         med=0s       max=5.64s    p(90)=0s       p(95)=2.93s
    http_req_connecting........: avg=10.63ms  min=0s         med=0s       max=321.33ms p(90)=0s       p(95)=123.46ms
    http_req_duration..........: avg=953.25ms min=128.3µs    med=292.67ms max=59.93s   p(90)=2.22s    p(95)=3.19s
    http_req_receiving.........: avg=223.82ms min=-15.0602ms med=2.04ms   max=59.78s   p(90)=389.02ms p(95)=1.14s
    http_req_sending...........: avg=221.58µs min=70.8µs     med=155.4µs  max=8.2ms    p(90)=337µs    p(95)=469.13µs
    http_req_tls_handshaking...: avg=206.19ms min=0s         med=0s       max=5.24s    p(90)=0s       p(95)=2.59s
    http_req_waiting...........: avg=729.2ms  min=0s         med=199.58ms max=59.7s    p(90)=1.96s    p(95)=2.86s
    http_reqs..................: 6500   63.046647/s
    iteration_duration.........: avg=1m3s     min=31.83s     med=50.92s   max=1m43s    p(90)=1m39s    p(95)=1m40s
    iterations.................: 50     0.484974/s
    vus........................: 50     min=50 max=50
    vus_max....................: 50     min=50 max=50

Check the Kubernetes pods CPU and memory consumption in the Kubernetes Grafana dashboard

Load Scenario 02 Grafana Portal Dashboard

From the load test stats and graphs above, we can conclude that the provisioned CPU and memory resources on the Kubernetes cluster are enough to sustain 50 concurrent users going through the entire flow.

Suggest improvements and tuning procedures for the infrastructure and application under test

Here are some optimization steps that we usually perform after running load tests:

For more details, have a look at our comprehensive load testing documentation on our Cloud Posse Developer Hub.

Credits

Thanks to Load Impact for the excellent k6 tool and examples of load testing scenarios

Help

Got a question?

File a GitHub issue, send us an email or reach out to us on Gitter.

Contributing

Bug Reports & Feature Requests

Please use the issue tracker to report any bugs or file feature requests.

Developing

If you are interested in being a contributor and want to get involved in developing load-testing, we would love to hear from you! Shoot us an email.

In general, PRs are welcome. We follow the typical "fork-and-pull" Git workflow.

  1. Fork the repo on GitHub
  2. Clone the project to your own machine
  3. Commit changes to your own branch
  4. Push your work back up to your fork
  5. Submit a Pull request so that we can review your changes

NOTE: Be sure to merge the latest from "upstream" before making a pull request!

License

APACHE 2.0 © 2018 Cloud Posse, LLC

See LICENSE for full details.

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements.  See the NOTICE file
distributed with this work for additional information
regarding copyright ownership.  The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License.  You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.  See the License for the
specific language governing permissions and limitations
under the License.

About

load-testing is maintained and funded by Cloud Posse, LLC.

Cloud Posse

Like it? Please let us know at hello@cloudposse.com

We love Open Source Software!

See our other projects or hire us to help build your next cloud platform.

Contributors

Erik Osterman<br/>Erik OstermanAndriy Knysh<br/>Andriy KnyshIgor Rodionov<br/>Igor RodionovSarkis Varozian<br/>Sarkis Varozian