Home

Awesome

Benchmark-Wrapper aka SNAFU - Situation Normal: All F'ed Up

Documentation Status pre-commit.ci status

Benchmark-wrapper provides a convenient mechanism for launching, processing, and storing data produced by a suite of performance benchmarks. Users can run Benchmark-wrapper in a traditional bare-metal environment or with the use of benchmark-operator ran in a containerized environment such as Kubernetes.

Documentation can be found over on readthedocs

Note: If you need your benchmark to collect data for both Kubernetes and non-Kubernetes environments, incorporate your benchmark into benchmark-wrapper and then write a benchmark-operator benchmark to integrate with Kubernetes.

Why Should I use Benchmark-wrapper?

Traditionally benchmark tools have presented users with an adhoc raw standard output, limiting ability to perform detailed statistical analysis, no way to preserve results for long term archive, and difficulty at being platform agnostic. Benchmark-wrapper aims to solve all of these issues and provide users with a integrated streamlined interface.

How to Run

It is suggested to use a virtual environment to install and run snafu.

python3 -m venv /path/to/new/virtual/environment
source /path/to/new/virtual/environment/bin/activate
git clone https://github.com/cloud-bulldozer/snafu
python setup.py develop
run_snafu --tool Your_Benchmark ...

- Install

git clone https://github.com/cloud-bulldozer/benchmark-wrapper.git
sudo pip3 install /path-to-benchmark-wrapper/benchmark-wrapper

If you are using a specific version of python and would like stable, reproducable builds, use the included install.txt files under the requirements directory. These are pip requirements files, generated using pip-compile, that specify version-locked dependencies for benchmark-wrapper that are tested and known to work for the given version of Python. For instance, to install on Python 3.6:

git clone https://github.com/cloud-bulldozer/benchmark-wrapper.git
sudo pip3 install -r benchmark-wrapper/requirements/py36-reqs/install.txt
sudo pip3 install ./benchmark-wrapper

- Configure

Benchmark-wrapper uses several environment variable to provide user context and interfaces to ES.

export uuid=<RFC4122 Version 4 uuid>
export test_user=<test user name>
export clustername=<platform or cluster descriptive name>
export es=<http://es_address:es_port>

- Run

python3.7 ./snafu/run_snafu.py --tool <tool name>  followed by tool dependent parameters.

for example:

python3.7 ./snafu/run_snafu.py --tool sysbench -f example__cpu_test.conf

Archiving data

Benchmark-wrapper has two forms of capturing data. The first and preferred method is directly writing data to Elasticsearch, users will need to set the es environment variable in order to enable this. The second method used for capturing data is writing to a local archive file, this is intended to be enabled when Elasticsearch is not available for direct indexing or for a backup of indexed results. Both methods can be enabled at the same time, and are independent of each other.

To enable writing to an archive file users can use the --create-archive, if users require the file to be named/located in a specific location they can use --archive-file <file name>.

For example:

python3.7 ./snafu/run_snafu.py --tool sysbench -f example__cpu_test.conf --create-archive --archive-file /tmp/my_sysbench_data.archive

To index from an archive file users can invoke run_snafu as follows:

python3.7 ./snafu/run_snafu.py --tool archive --archive-file /tmp/my_sysbench_data.archive

Note: The archive file contains Elasticsearch friendly documents per line and is intended for future indexing, so it is not expect that users evaluate or review it manually.

What workloads do we support?

WorkloadUseStatus
UPerfNetwork PerformanceWorking
flentNetwork PerformanceWorking
fioStorage IOWorking
YCSBDatabase PerformanceWorking
PgbenchPostgres PerformanceWorking
smallfilemetadata-intensive opsWorking
fs-driftmetadata-intensive mixWorking
cyclictestReal-Time LatencyWorking
oslatReal-Time LatencyWorking
OpenShift UpgradeTime to upgradeWorking
OpenShift ScalingTime to scaleWorking
Log GeneratorLog throughput to backendWorking
Image PullTime to copy from a container image from a repoWorking
sysbenchCPU,Memory,Mutex,Threads,FileioWorking
DNS-PerfDNS PerformanceWorking

Supported backend data storage?

StorageStatus
ElasticsearchWorking
PromPlanned

how do I develop a snafu extension for my benchmark?

In what follows, your benchmark's name should be substituted for the name "Your_Benchmark". Use alphanumerics and underscores only in your benchmark name.

You must supply a "wrapper", which provides these functions:

Note: snafu is a python library, so please add the new python libraries you import to the setup.txt

Your benchmark-operator benchmark will define several environment variables relevant to Elasticsearch:

It will then invoke your wrapper via the command:

run_snafu --tool Your_Benchmark ...

Additional parameters are benchmark-specific and are passed to the wrapper to be parsed, with the exception of some common parameters:

Create a subdirectory for your wrapper with the name Your_Benchmark_wrapper. The following files must be present in it:

In order for run_snafu.py to know about your wrapper, you must add an import statement and a key-value pair for your benchmark to utils/wrapper_factory.py.

The Dockerfile should not git clone snafu - this makes it harder to develop wrappers. Instead, assume that the image will be built like this:

# docker build -f snafu/Your_Benchmark_wrapper/Dockerfile .

And use the Dockerfile command:

RUN mkdir -pv /opt/snafu
COPY . /opt/snafu/

The end result is that your benchmark-operator benchmark becomes much simpler while you get to save data to a central Elasticsearch server that is viewable with Kibana and Grafana!

Look at some of the other benchmarks for examples of how this works.

How do I prepare results for Elasticsearch indexing from my wrapper?

Every snafu benchmark will use Elasticsearch index name of the form orchestrator-benchmark-doctype, consisting of the 3 components:

If you are using run_snafu.py, construct an elastic search document in the usual way, and then use the python "yield" statement (do not return!) a document and doctype, where document is a python dictionary representing an Elasticsearch document, and doctype is the end of the index name. For example, any benchmark-operator benchmark will be defining an index name that begins with benchmark-operator, but your wrapper can create whatever indexes it wants with that prefix. For example, to create an index named benchmark-operator-iperf-results, you just do something like this:

es_index: benchmark-operator-iperf
    yield my_doc, 'results'

run_snafu.py concatenates the doctype with the es_index component associated with the benchmark to generate the full index name, and posts document my__doc to it.

how do I integrate snafu wrapper into my benchmark-operator benchmark?

You just replace the commands to run the workload in your benchmark-operator benchmark (often in roles/Your_Workload/templates/workload.yml.j2) with the command below.

First, you have to define environment variables used to pass information to run_snafu.py for access to Elasticsearch:

      spec:
        containers:
          env:
          - name: uuid
            value: "{{ uuid }}"
          - name: test_user
            value: "{{ test_user }}"
          - name: clustername
            value: "{{ clustername }}"
{% if elasticsearch.server is defined %}
          - name: es
            value: "{{ elasticsearch.server }}"
{% endif %}

Note that you do not have to use elasticsearch with benchmark-operator, but this is recommended so that your results will be accessible outside of the openshift cluster in which they were created.

Next you replace the commands that run your workload with a single command to invoke run_snafu.py, which in turn invokes the wrapper to run the workload for as many samples as you want.

...
                 args:
...
                    run_snafu
                   --tool Your_Workload
{% if Your_Workload.samples is defined %}
                   --samples {{Your_Workload.samples}}
{% endif %}

The remaining parameters are specific to your workload and wrapper. run_snafu.py has an "object-oriented" parser - the only inherited parameter is the --tool parameter. run_snafu.py uses the tool parameter to determine which wrapper to invoke, and The remaining parameters are defined and parsed by the workload-specific wrapper.

how do I run my snafu wrapper in CI?

add the ci_test.sh script to your wrapper directory - the SNAFU CI (Continuous Integration) test harness will automatically find it and run it. This assumes that your wrapper supports benchmark-operator, for now. At present, the CI does not test SNAFU on baremetal but this may be added in the future.

every ci_test.sh script makes use of environment variables defined in ci/common.sh :

You, the wrapper developer, can override these variables to use any container image repository supported by benchmark-operator (quay.io is at present the only location tested).

NOTE: at present, you need to force these images to be public images so that minikube can load them. A better method is needed.

In your CI script, ci_test.sh, you can make use of these 2 environment variables:

And here is a simple example of a ci_test.sh (they all look very similar):

#!/bin/bash
source ci/common.sh
default_image_spec="quay.io/cloud-bulldozer/your_wrapper:master"
image_spec=$SNAFU_WRAPPER_IMAGE_PREFIX/your_wrapper:$SNAFU_IMAGE_TAG
build_and_push snafu/your_wrapper/Dockerfile $image_spec

cd benchmark-operator
sed -i "s#$default_image_spec#$image_spec#" roles/your_wrapper_in_benchmark-operator/templates/*

# Build new benchmark-operator image
update_operator_image

# run the benchmark-operator CI for your wrapper in tests/ and get resulting UUID
get_uuid test_your_wrapper.sh
uuid=`cat uuid`

cd ..

# Define index (there can be more than 1 separated by whitespaces)
index="benchmark-operator-your-wrapper-results"

check_es "${uuid}" "${index}"
exit $?

Note: If your PR requires a PR in benchmark-operator to be merged, you can ask CI to checkout that PR by adding a Depends-On: <benchmark-operator_pr_number> to the end of your snafu commit message.

CodeStyling and Linting

Touchstone uses pre-commit framework to maintain the code linting and python code styling. The CI would run the pre-commit check on each pull request. We encourage our contributors to follow the same pattern, while contributing to the code.

The pre-commit configuration file is present in the repository .pre-commit-config.yaml It contains the different code styling and linting guide which we use for the application.

Following command can be used to run the pre-commit: pre-commit run --all-files

If pre-commit is not installed in your system, it can be install with : pip install pre-commit