Awesome
VLDet: Learning Object-Language Alignments for Open-Vocabulary Object Detection
<p align="center"> <img src='docs/readme.jpeg' align="center" height="200px"> </p>Learning Object-Language Alignments for Open-Vocabulary Object Detection,
Chuang Lin, Peize Sun, Yi Jiang, Ping Luo, Lizhen Qu, Gholamreza Haffari, Zehuan Yuan, Jianfei Cai,
ICLR 2023 (https://arxiv.org/abs/2211.14843)
Highlight
We are excited to announce that our paper was accepted to ICLR 2023! 🥳🥳🥳
A quick explainable video demo for VLDet
https://user-images.githubusercontent.com/6366788/218620999-1eb5c5eb-0479-4dcc-88ca-863f34de25a0.mp4
Performance
Open-Vocabulary on COCO
<p align="center"> <img src="https://user-images.githubusercontent.com/6366788/214261751-3007d40c-5a5d-4efd-8acd-7f6a4ea62ce3.png" width=68%> <p>Open-Vocabulary on LVIS
<p align="center"> <img src="https://user-images.githubusercontent.com/6366788/214262298-ab2de22b-910a-44ba-9bc5-f0df6e4d5e14.png" width=68%> <p>Installation
Requirements
- Linux or macOS with Python ≥ 3.7
- PyTorch ≥ 1.9. Install them together at pytorch.org to make sure of this. Note, please check PyTorch version matches that is required by Detectron2.
- Detectron2: follow Detectron2 installation instructions.
Example conda environment setup
conda create --name VLDet python=3.7 -y
conda activate VLDet
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia
# under your working directory
git clone https://github.com/clin1223/VLDet.git
cd VLDet
cd detectron2
pip install -e .
cd ..
pip install -r requirements.txt
Features
-
Directly learn an open-vocabulary object detector from image-text pairs by formulating the task as a bipartite matching problem.
-
State-of-the-art results on Open-vocabulary LVIS and Open-vocabulary COCO.
-
Scaling and extending novel object vocabulary easily.
Benchmark evaluation and training
Please first prepare datasets.
The VLDet models are finetuned on the corresponding Box-Supervised models (indicated by MODEL.WEIGHTS in the config files). Please train or download the Box-Supervised model and place them under VLDet_ROOT/models/ before training the VLDet models.
To train a model, run
python train_net.py --num-gpus 8 --config-file /path/to/config/name.yaml
To evaluate a model with a trained/ pretrained model, run
python train_net.py --num-gpus 8 --config-file /path/to/config/name.yaml --eval-only MODEL.WEIGHTS /path/to/weight.pth
Download the trained network weights here.
OV_COCO | box mAP50 | box mAP50_novel |
---|---|---|
config_RN50 | 45.8 | 32.0 |
OV_LVIS | mask mAP_all | mask mAP_novel |
---|---|---|
config_RN50 | 30.1 | 21.7 |
config_Swin-B | 38.1 | 26.3 |
Citation
If you find this project useful for your research, please use the following BibTeX entry.
@article{VLDet,
title={Learning Object-Language Alignments for Open-Vocabulary Object Detection},
author={Lin, Chuang and Sun, Peize and Jiang, Yi and Luo, Ping and Qu, Lizhen and Haffari, Gholamreza and Yuan, Zehuan and Cai, Jianfei},
journal={arXiv preprint arXiv:2211.14843},
year={2022}
}
License
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
Acknowledgement
This repository was built on top of Detectron2, Detic, RegionCLIP and OVR-CNN. We thank for their hard work.