Awesome
FD-MobileNet: Improved MobileNet with A Fast Downsampling Strategy
Introduction
This repository contains the code for FD-MobileNet (Fast-Downsampling MobileNet), an efficient and accurate network for very limited computational budgets (e.g., 10-140 MFLOPs).
Our paper FD-MobileNet: Improved MobileNet with A Fast Downsampling Strategy is under review as a conference paper at ICIP 2018.
For details, please refer to our arXiv version.
Requirements
- pytorch >= 0.2.0, torchvision >= 0.2.0
- graphviz >= 0.8.0
Usage
To train a model:
python -u main.py \
--data /path/to/data/config \
--model /path/to/model/config \
--optim /path/to/optim/config \
--sched /path/to/sched/config \
--label model_label \
[--print-freq N] \
[--resume] \
[--evaluate]
where model_label
is the name of the checkpoint to be saved or resumed. For example:
python -u main.py \
--data config/imagenet/data-config/imagenet-aggressive.json \
--model config/imagenet/model-config/fd-mobilenet/1x-FDMobileNet-224.json \
--optim config/imagenet/optim-config/SGD-120-nesterov.json \
--sched config/imagenet/sched-config/StepLR-30-0.1.json \
--label 1x-FDMobileNet-224
For simplicity, we train models and save checkpoints in multi-GPU models (using torch.nn.DataParallel
), which means the keys in the state_dict
saved have the prefix module.
. To convert a multi-GPU model to single-GPU model, run convert_model.py
:
python -u convert_model.py \
--data /path/to/data/config \
--model /path/to/model/config \
--label model_label \
--input /path/to/checkpoint/file \
--output /path/to/output/file
Our pre-trained models are single-GPU models (without prefix). To evaluate single-GPU models, run evaluate.py
:
python -u evaluate.py \
--data /path/to/data/config \
--model /path/to/model/config \
--checkpoint /path/to/checkpoint/file \
[--print-freq N]
main.py
is modified from the pytorch example.
Results on ImageNet 2012
Training configuration:
- 120 epochs;
- Batch size: 256;
- Momentum: 0.9;
- Weight decay: 4e-5;
- Learning rate starts from 0.1, divided by 10 every 30 epochs;
- 4 GPUs.
Model | MFLOPs | Top-1 Acc. (%) |
---|---|---|
FD-MobileNet 1$\times$ | 144 | 65.3 |
FD-MobileNet 0.5$\times$ | 40 | 56.3 |
FD-MobileNet 0.25$\times$ | 12 | 45.1 |