Home

Awesome

1. Data

(1) Raw data files

The uploaded files including the 3-week raw data of 10 large-scale application running in the data center (i.e. app0~app9). All the data can be found at folder: "data/data_submit/", which consists of 10 .csv files.

Part of the MQPS datasets can be found at the folder: "part_of_MQPS"

(2) Train/Test Dataset Example

We choose the aplication app8, which is a front-end appliation for the customers. In general, we construct the example dataset at folder: "data/data_train_test/app8-example/". The ".npy" file in "data/data_train_test/app8-example/" save the train/test dataset sample. Specifically, we construct: 1) train dataset for 8-hour QPS sequence (480 items) and 2) test dataset for 1-hour QPS sequence (60 items). We list the dataset files as follow:

  1. "*_train/test_prophet_ts.npy": trend & dominant seasonality components in the train/test dataset, e.g., "app8-example_train/test_prophet_ts.npy"
  2. "*_train/test_ts.npy": predictable residual components to train/test the main Informer architectures,e.g. "app8-example_train/test_ts.npy"
  3. "*_train/test_event.npy": predictable residual components to train/test the ER-embedding Informer architectures,e.g., "app8-example_train/test_event.npy";
  4. "*_train/test_base_ts.npy": the ground-truth of the raw data for train/test datasets

2. Code

(1) Requirements

You need to run our experiments with python 3.8 The packages you need to install are listed as follow:

matplotlib==3.1.1

numpy==1.23.1

pandas==1.4.3

scikit_learn==0.24.2

torch==1.8.0

prophet==1.1

dtaidistance==2.3.9

statsmodels==0.12.2

scipy==1.8.1

please run the command to install the package as: pip install -r requirements.txt

the requirement.txt is at: KAE-Informer/

(2) Code architecture

In our supplementary material, all the code are in the folder KAE-Informer. Including the folder model to save the code of modeling the KAE-Informer; and the folder util and exp to save the code about some tool function and the code which are called to execute the experiments.

(3) Reproducing the Experiments

To run the experiments, firstly, you need to run the file: data_event_search_ts_extractor.py to construct the train/test datasets as:

python data_event_search_ts_extractor.py --app=app8 --start_day=18 --end_day=-1 --test_len=1440 --input_len=1440 --predict_len=60 --event_num=7 --dtw_length=240 --freq=min --sample_rate=1440

This command can generate the train dataset with 2820 items and a test set with 1440 items, the meaning of each parameter is: --app: selected app

--test_len: length of the total predicted items

--start_day: the day start to construct the dataset

--end_day: the day ends to process the dataset, -1 means to the end of the data (do not change it)

--predict_len: the steps of $Y_L$ which is predicted by the Informer-architecture at once

--input_len: the steps of $X_L$ which is inputed to the main Informer architecture

--event_num: the number of similar events queried from the historical data

--dtw_length: the length of the sequence to input to the dtw algorithm to query the similar event

--freq: the freq of the raw data,default min for 1-minute sampling interval

--sample_rate: the sampling rate,i.e., the number of the sampling points collected per day

Secondly, you can run the experiments by running the main_informer.py as:

python main_informer.py --gpu=0 --model=kaeinformer --app=app8-example --enc_in=8 --dec_in=8 --c_out=8 --d_model=512 --d_ff=2048 --event_d_model=384 --d_model=512 --d_ff=2048 --event_d_ff=1536 --data=qps --data_item_size=480 --data_type=0 --seq_len=1440 --label_len=240 --pred_len=60 --sample_type=0 --train_epochs=20 --batch_size=32 --patience=6 --freq=t --loss=huber --loss_beta=0.2 --qvk_kernel_size=5 --event_qvk_kernel_size=3 --event_seq_len=7 --event_label_len=2 --event_pred_len=1 --e_layers=3 --d_layers=2 --event_e_layers=2 --event_d_layers=1 --attn=prob --embed=timeF --activation=gelu --learning_rate=0.0002 --loss=huber --event_loss=mse --root_path=./data/data_train_test/ --checkpoints=KAE/checkpoints/ --result_dir=./results/ --do_predict

--gpu: the id of the used gpu device

--app: selected app

--model: model type (default:kaeinformer)

--enc_in: dimension of the encoderinput matix,i.e., the extracted events num + 1 (extracted events num is set at --event_num in data_event_search_ts_extractor.py)

--dec_in: dimension of the decoder input matix,i.e., the extracted events num + 1 (extracted events num is set at --event_num in data_event_search_ts_extractor.py)

--c_out: the dimension of the $Y_{out}$ matrix for the output of the main Informer networks (equal to dec_in)

--d_model: dimension of hidden layers in model

--d_ff: dimension of fcn

--event_d_model: dimension of hidden layers in the ER-embedding architectures

--event_d_ff: dimension of the fcn in ER-embedding layers

--data: the domain of this data, default: qps (do not change)

--data_item_size: the size of the dataset item (default: if you use the app8-example to run this demo, set it as 480, if you run data_event_search_ts_extractor.py to generate the dataset, set it as the item number of the train dataset,i.e., the shape 0 of the <app name>_train_ts.npy in ./data/data_train_test/<app name>)

--data_type: the type of the components input to the main Informer and ER-Embedding layers, i.e. 0 (default), which means train the main Informer and ER-embedding layers with the input of the predictable residual components; 2: train the main Informer and ER-embedding layers with the input of raw data involving all the components.

--seq_len: input sequence length of Informer encoder, equal to --input_len in data_event_search_ts_extractor.py

--label_len: start token length of Informer decoder, equal to --dtw_length in data_event_search_ts_extractor.py

--pred_len: prediction sequence length, equal to --predict_len in data_event_search_ts_extractor.py

--freq: the sampling rate, default: 't' means freq='min' in data_event_search_ts_extractor.py

--sample_type: the sample type means if we consider the extracted events in our model, default: 0 means consider it

--event_seq_len: the extracted events num (extracted events num is set at --event_num in data_event_search_ts_extractor.py)

--event_label_len: the token event num used in the ER-Embedding layers

--event_pred_len: 1, the predicted event num

--e_layers: the number of the encoder layers of main Informer

--d_layers: the number of the decoder layers of main Informer

--event_e_layers: the number of the encoder layers of ER-embedding layers

--event_d_layers: the number of the decoder layers of ER-embedding layers

--attn: attention used in encoder of main Informer, options:[prob, full]

--embed: time features encoding, options:[timeF, fixed, learned], default: timeF

--activation: activation function, default: gelu

--learning_rate: learning rate

--train_epochs: number of the training epochs, default: 20

--patience: early stopping patience, default: 6

--batch_size: the mini batch size, default: 32

--loss: the loss function for the main Informer architecture, default: huber

--event_loss: the loss function for the ER-Embedding layers

--qvk_kernel_size: kernel size for qvk projection in convolution ProbSparse self-attention in the main Informer architecture, default 5

--event_qvk_kernel_size: kernel size for qvk projection in convolution ProbSparse self-attention in the ER-Embedding layers, default 3

--root_path=./data/data_train_test/ : the data path of the train/test dataset

--checkpoints=KAE/checkpoints/ : the path to save the model

--result_dir=./results/: the path to save the metric and prediction results

--do_predict: do prediction for this model

Specifically, a user can simply run this file as: python main_informer.py --gpu=0 --model=kaeinformer --data=qps --app=app8-example --data_item_size=480 --data_type=0 --seq_len=1440 --label_len=240 --train_epochs=20 --sample_type=0 --root_path=./data/data_train_test/ --checkpoints=KAE/checkpoints/ --result_dir=./results/ --do_predict

Please set the selected parameter of app and data_item_sizeif you want to choose the dataset you construct by self through running the data_event_search_ts_extractor.py.

Finally, if you set --do_predict when running main_informer.py, you can generate the prediction results and the metric for the selected app, which are saved at:

It shoule be noted that the app8-example dataset only can be used to show the training and predicting process, since the size of this dataset is too small, the performance of the trained model show the extremely obvious performance degradation.