Awesome
Quantitative Evaluation of Disentangled Representations
Code to reproduce the results in our ICLR 2018 paper: A Framework for the Quantitative Evaluation of Disentangled Representations.
Prerequisites
- Python 2.7.5+/3.5+, NumPy, TensorFlow 1.0+, SciPy, Matplotlib, Scikit-learn
Data
- Download here.
- If RAM < 10GB, convert .npz to .jpeg before training to load batches of images into memory (rather than entire dataset)
python npz_to_jpeg.py
(after editing paths)
- If RAM < 10GB, convert .npz to .jpeg before training to load batches of images into memory (rather than entire dataset)
- Generated using this renderer.
Models
Train
PYTHONPATH=[/path/to/qedr/] python main.py
Save codes
PYTHONPATH=[/path/to/qedr/] python main.py --save_codes
Quantitative Evaluation
- quantify.ipynb