Awesome
Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Domain Learning
<p align="center"> <br> Beijing Jiaotong University, YanShan University, A*Star </p> <img src="./freqnet.png" width="100%" alt="overall pipeline">Reference github repository for the paper Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Domain Learning. FreqNet is accepted by AAAI 2024!
@misc{tan2024frequencyaware,
title={Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Learning},
author={Chuangchuang Tan and Yao Zhao and Shikui Wei and Guanghua Gu and Ping Liu and Yunchao Wei},
year={2024},
eprint={2403.07240},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
TODO
- Random seed setting ensures reproducibility of results.
[ ] Pre-Trained Model release[ ] Update link to paper[ ] Pretrained models[ ] Dataset download[ ] Code released
Environment setup
Classification environment: We recommend installing the required packages by running the command:
pip install -r requirements.txt
Getting the data
Download dataset from CNNDetection CVPR2020, GANGen-Detection (googledrive).
pip install gdown==4.7.1
chmod 777 ./download_dataset.sh
./download_dataset.sh
Training the model
CUDA_VISIBLE_DEVICES=0 python train.py --name 4class-resnet-car-cat-chair-horse --dataroot {CNNDetection-Path} --classes car,cat,chair,horse --batch_size 32 --delr_freq 10 --lr 0.001 --niter 85
GPU Server information
Our GPU Server information is as follows:(Paper results)
CPU : Hygon C86 7169 24-core Processor
GPU : A4000
Nvidia Driver : 495.29.05
Ubuntu Version: 20.04.1 LTS
Testing the detector
Modify the dataroot in test.py.
CUDA_VISIBLE_DEVICES=0 python test.py --model_path ./4-classes-freqnet.pth --batch_size {BS}
<!--
## Detection Results
-->
Acknowledgments
This repository borrows partially from the CNNDetection, NPR.