Awesome
Minkowski Engine Benchmark
MinkUNet34 (42 conv layers)
Time to process a sparse tensor
Number of Non-zero Elements (NNZ) | CPU (E5) | V100 | A100 |
---|
161890 | 9.189684867858887 | 0.1606714725494384 | 0.0800826549530029 |
323780 | 22.11437630653381 | 0.2796809673309326 | 0.1274714469909668 |
647560 | 48.82245087623596 | 0.5429468154907227 | 0.2160387039184570 |
971340 | 79.74007511138916 | 0.8115856647491455 | 0.3341245651245117 |
1295120 | 107.2188804149627 | 1.0402274131774902 | 0.4301359653472900 |
1618900 | 137.5616581439972 | 1.3221232891082764 | 0.5263621807098389 |
1942680 | 167.6317486763000 | 1.578477144241333 | 0.624725341796875 |
2266460 | 196.8181667327881 | 1.8281619548797607 | 0.7229833602905273 |
2590240 | 227.5360894203186 | 2.0409200191497803 | 0.8182036876678467 |
3237800 | 290.2604696750641 | 2.6243700981140137 | 1.0436716079711914 |
Speedup over CPU
Number of Non-zero Elements (NNZ) | V100 | A100 |
---|
161890 | 57.19549788174895 | 114.75250006698 |
323780 | 79.07000793646057 | 173.48493979283 |
647560 | 89.92123995074834 | 225.98937130572 |
971340 | 98.25219761124805 | 238.65373406972 |
1295120 | 103.0725388090386 | 249.26741554474 |
1618900 | 104.0460139211203 | 261.34411472816 |
1942680 | 106.1984009637777 | 268.32871577475 |
2266460 | 107.6590431211183 | 272.23056233783 |
2590240 | 111.4870192292528 | 278.09223161639 |
3237800 | 110.6019573548936 | 278.11475128590 |
MinkUNet14 (25 conv layers)
Ryzen 3700X + Titan RTX
| v0.5b | speed up | v0.4.3 |
---|
Number of Non-zero Elements (Points) | Time | x | Time |
161890 | 0.09865355492 | 3.906438882 | 0.3853840828 |
323780 | 0.201720953 | 4.181743076 | 0.8435451984 |
647560 | 0.3909289837 | 4.733338619 | 1.850399256 |
971340 | 0.6050679684 | 4.824337556 | 2.919052124 |
1295120 | 0.8053011894 | 5.007231003 | 4.032329082 |
1618900 | 1.009372473 | 5.070545621 | 5.118069172 |
1942680 | 1.211565018 | 5.053071509 | 6.122124672 |
Ryzen 3700X + Titan RTX ITX
| v0.5c | speed up | v0.5b |
---|
Number of Non-zero Elements (Points) | Time | x | Time |
161890 | 0.118088483 | 1.301948924 | 0.1537451744079589 |
323780 | 0.224587202 | 1.420111955 | 0.3189389705657959 |
647560 | 0.429016828 | 1.448982926 | 0.6216380596160889 |
971340 | 0.675571441 | 1.431851259 | 0.9673178195953369 |
1295120 | 0.895347356 | 1.433548963 | 1.2835242748260498 |
1618900 | 1.114722967 | 1.443795053 | 1.609431505203247 |
1942680 | 1.339769125 | 1.448891065 | 1.9411795139312744 |
Fully Convolutional Geometric Features FCGF (21 conv layers)
ResUNetBN2C on Ryzen 3700X + Titan RTX
| v0.5b | speed up | v0.4.3 |
---|
Number of Non-zero Elements (Points) | Time | x | Time |
5322 | 0.014988899 | 2.631752243 | 0.0394470691 |
10644 | 0.016107559 | 4.11098283 | 0.0662178993 |
21288 | 0.022331714 | 5.615388722 | 0.1254012585 |
42576 | 0.035487651 | 6.560935463 | 0.2328321934 |
85152 | 0.062259197 | 7.109369136 | 0.4426236153 |
170304 | 0.113505363 | 7.534897789 | 0.8552513123 |
340608 | 0.224957943 | 7.712351967 | 1.734954834 |
ResUNetBN2C on Ryzen 3700X + Titan RTX ITX
| v0.5c | speed up | v0.5b |
---|
Number of Non-zero Elements (Points) | Time | x | Time |
5322 | 0.0139970779 | 1.015772975 | 0.0142178535 |
10644 | 0.0171124935 | 1.005572968 | 0.0172078609 |
21288 | 0.0207984447 | 1.046483632 | 0.0217652320 |
42576 | 0.0319116115 | 1.075287453 | 0.0343141555 |
85152 | 0.0537533760 | 1.117707066 | 0.0600805282 |
170304 | 0.0964894294 | 1.139130628 | 0.1099140644 |
340608 | 0.1927807331 | 1.144459244 | 0.2206296920 |