Home

Awesome

目录

Recommendation System

Deep Learning

Kaggle

论文概述

Supervised Contrastive Learning

评分:4/5。
简介:Google家在SimCLR自监督对比学习(contrastive learning)的loss结构基础上,延伸到有监督学习中,并在多项图像任务中排列第一。论文本身和推荐系统无关,但是如果仔细推敲,公式非常接近bayesian personalized ranking loss(BPR loss),而其实这一类triplet loss正是contrasive learning的其中一个子应用,也即当只有一个正负样本对的时候,当正负样本对的数量增大到多个时,将sigmoid改进为softmax,即可推出该论文中自监督学习的公式了。

Multi-Interest Network with Dynamic Routing for Recommendation at Tmall

评分:5/5。
简介:引入capsule的dynamic routing和label-aware attention,对用户历史行为序列(点击商品的集合)提取用户兴趣特征(user embedding)。相比阿里之前的DIN在用户行为聚类上更进了一步,本质上是商品特征的soft clustering,并根据电商环境进行了改良。

BERT4Rec- Sequential Recommendation with Bidirectional Encoder Representations from Transformer

评分:4/5。
简介:将Bert双向Transformer的结构带入了推荐系统,并改变了目标用Cloze task来防止信息泄漏并可用于预测随机masked的item。

Behavior Sequence Transformer for E-commerce Recommendation in Alibaba

评分:3/5。
简介:将Transformer的self attention结构应用在推荐系统典型的Wide & Deep网络结构中。

Deep Neural Networks for YouTube Recommendations

评分:5+/5。
简介:使用DNN对大规模线上推荐系统架构的一次综述,包含Candidate Generation和Ranking两部分。Candidiate Gneration的部分负责生成user embedding,借鉴wordvec的skip gram negative sampling模型,Ranking部分使用类似的架构,并用weighted LR将目标改为预计观看时间。很经典的文章。

Collaborative Deep Learning for Recommender Systems

评分:4/5。
简介:针对rating和content information matrix,设计MAP(Maximum A Priori)的objective function来改善user embedding。相比传统collaborative filtering不擅长直接处理稀疏rating输入,CDL通过更好地结合content information可以得到更好的rating prediction。

Wide & Deep Learning for Recommender Systems

评分:4/5。
简介:利用logistic regression针对广度的交叉特征(cross product transformation),利用NN负责深度特征挖掘,并同时进行joint training。来自Google的工程实践总结。

Real-time Personalization using Embeddings for Search Ranking at Airbnb

评分:5/5。
简介:对listing做embedding,将user type,listing type以及query在同一个vector space构建embedding,以实时更新搜索结果并提高准度。KDD 2018 best paper。

A Cross-Domain Recommendation Mechanism for Cold-Start Users Based on Partial Least Squares Regression

评分:3/5。
简介:利用PLSR来解决用户推荐场景里cold start的问题。

IRGAN - A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

评分:5/5。
简介:将GAN应用在information retrieval上。SIGIR2017满分论文。

Practical Lessons from Predicting Clicks on Ads at Facebook

评分:4/5。
简介:Facebook提出的CTR预估模型,GBDT + Logistic Regression。