Awesome
Confident Multiple Choice Learning
This code is for the paper "Confident Multiple Choice Learning".
Preliminaries
It is tested under Ubuntu Linux 16.04.1 and Python 2.7 environment, and requries following Python packages to be installed:
- TensorFlow: version 1.0.0 or above. Only GPU version is available.
- Torchfile: version 0.0.2 or above.
Simple torchfile installation:
pip install torchfile
Dataset
We provide the following datasets in torch format:
- CIFAR-10 whitened: pre-processed data (1.37GB)
- SVHN (excluding the extra dataset): pre-processed data (2.27GB)
Example scripts
run_CMCL.sh
: train the models using "Confident multiple choice learning".run_MCL.sh
: train the models using "Multiple choice learning".run_IE.sh
: train the models using "Independent ensemble".
All training options:
python src/ensemble.py \
--dataset=cifar \
--model_type=resnet \
--batch_size=128 \
--num_model=5 \
--loss_type=cmcl_v0 \
--k=4 \
--beta=0.75 \
--feature_sharing=True \
--test=False
dataset
: supportscifar
andsvhn
.model_type
: supportsvggnet
,googlenet
, andresnet
.batch_size
: we use batch size 128.num_model
: number of models to ensemble.loss_type
: supportsindependent
,mcl
,cmcl_v0
, andcmcl_v1
.k
: overlap parameter.beta
: penalty parameter.feature_sharing
: use feature sharing ifTrue
.test
: ifTrue
, test the result of previous training, otherwise run a new training.