Home

Awesome

TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars

Requirement

See requirements.txt for additional dependencies and version requirements.

pip install -r requirements.txt

Data Preparation

/data
    bdd100k
        images
            train/
            val/
            test/
        segments
            train/
            val/
        lane
            train/
            val/

Pipeline

<div align=center> <img src='image\arch.png' width='600'> </div>

Train

python3 main.py

Test

python3 val.py

Inference

Images

python3 test_image.py

Visualize

Drive-able segmentation

<div align=center> <img src='image\DA_vs.jpg' width='600'> </div> ### Lane Detection <div align=center> <img src='image\LL_vs.jpg' width='600'> </div>

Acknowledgement

Our source code is inspired by:

Citation

If you find our paper and code useful for your research, please consider giving a star :star: and citation :pencil: :

@INPROCEEDINGS{10288646,
  author={Che, Quang-Huy and Nguyen, Dinh-Phuc and Pham, Minh-Quan and Lam, Duc-Khai},
  booktitle={2023 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)}, 
  title={TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars}, 
  year={2023},
  volume={},
  number={},
  pages={1-6},
  doi={10.1109/MAPR59823.2023.10288646}}
<div align="center"> <img src="twin.png" width="30%"> </div>

TwinLiteNetV2: A small stone can kill a giant

🚀 Coming soon!

PWC PWC

Modelsize<br><sup>(Height x Width)Lane<br><sup>(Accuracy)Lane<br><sup>(IOU)Drivable Area<br><sup>(mIOU)params<br><sup>(M)FLOPs<br><sup> (B)
TwinLiteNetV2-Nano384 x 64070.823.687.20.030.485
TwinLiteNetV2-Small384 x 64075.928.790.40.141.366
TwinLiteNetv2-Medium384 x 64079.332.692.30.625.088
TwinLiteNetV2-Large384 x 64081.734.292.92.7821.526